|
import torch |
|
import torch.utils.benchmark as benchmark |
|
import argparse |
|
from diffusers import DiffusionPipeline, LCMScheduler |
|
|
|
PROMPT = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux" |
|
MODEL_ID = "stabilityai/stable-diffusion-xl-base-1.0" |
|
LORA_ID = "latent-consistency/lcm-lora-sdxl" |
|
|
|
|
|
def benchmark_fn(f, *args, **kwargs): |
|
t0 = benchmark.Timer( |
|
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f} |
|
) |
|
return t0.blocked_autorange().mean * 1e6 |
|
|
|
|
|
def load_pipeline(standard_sdxl=False): |
|
pipe = DiffusionPipeline.from_pretrained(MODEL_ID, variant="fp16") |
|
if not standard_sdxl: |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
pipe.load_lora_weights(LORA_ID) |
|
|
|
pipe.to(device="cuda", dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
return pipe |
|
|
|
|
|
def call_pipeline(pipe, batch_size, num_inference_steps, guidance_scale): |
|
images = pipe( |
|
prompt=PROMPT, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=batch_size, |
|
guidance_scale=guidance_scale, |
|
).images[0] |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--batch_size", type=int, default=1) |
|
parser.add_argument("--standard_sdxl", action="store_true") |
|
args = parser.parse_args() |
|
|
|
pipeline = load_pipeline(args.standard_sdxl) |
|
if args.standard_sdxl: |
|
num_inference_steps = 25 |
|
guidance_scale = 5 |
|
else: |
|
num_inference_steps = 4 |
|
guidance_scale = 1 |
|
|
|
time = benchmark_fn(call_pipeline, pipeline, args.batch_size, num_inference_steps, guidance_scale) |
|
|
|
print(f"Batch size: {args.batch_size} in {time/1e6:.3f} seconds") |
|
|