Datasets:
Tasks:
Text Classification
Sub-tasks:
intent-classification
Languages:
Polish
Size:
10K<n<100K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Cyberbullying Classification Dataset in Polish""" | |
import os | |
import datasets | |
_DESCRIPTION = """\ | |
In Task 6-1, the participants are to distinguish between normal/non-harmful tweets (class: 0) and tweets | |
that contain any kind of harmful information (class: 1). This includes cyberbullying, hate speech and | |
related phenomena. | |
In Task 6-2, the participants shall distinguish between three classes of tweets: 0 (non-harmful), | |
1 (cyberbullying), 2 (hate-speech). There are various definitions of both cyberbullying and hate-speech, | |
some of them even putting those two phenomena in the same group. The specific conditions on which we based | |
our annotations for both cyberbullying and hate-speech, which have been worked out during ten years of research | |
will be summarized in an introductory paper for the task, however, the main and definitive condition to 1 | |
distinguish the two is whether the harmful action is addressed towards a private person(s) (cyberbullying), | |
or a public person/entity/large group (hate-speech). | |
""" | |
_HOMEPAGE = "http://2019.poleval.pl/index.php/tasks/task6" | |
_URL_TRAIN_TASK1 = "http://2019.poleval.pl/task6/task_6-1.zip" | |
_URL_TRAIN_TASK2 = "http://2019.poleval.pl/task6/task_6-2.zip" | |
_URL_TEST = "http://2019.poleval.pl/task6/task6_test.zip" | |
_CITATION = """\ | |
@proceedings{ogr:kob:19:poleval, | |
editor = {Maciej Ogrodniczuk and Łukasz Kobyliński}, | |
title = {{Proceedings of the PolEval 2019 Workshop}}, | |
year = {2019}, | |
address = {Warsaw, Poland}, | |
publisher = {Institute of Computer Science, Polish Academy of Sciences}, | |
url = {http://2019.poleval.pl/files/poleval2019.pdf}, | |
isbn = "978-83-63159-28-3"} | |
} | |
""" | |
class Poleval2019CyberBullyingConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Poleval2019CyberBullying.""" | |
def __init__( | |
self, | |
text_features, | |
label_classes, | |
**kwargs, | |
): | |
super(Poleval2019CyberBullyingConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) | |
self.text_features = text_features | |
self.label_classes = label_classes | |
class Poleval2019CyberBullying(datasets.GeneratorBasedBuilder): | |
"""Cyberbullying Classification Dataset in Polish""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
Poleval2019CyberBullyingConfig( | |
name="task01", | |
text_features=["text"], | |
label_classes=["0", "1"], | |
), | |
Poleval2019CyberBullyingConfig( | |
name="task02", | |
text_features=["text"], | |
label_classes=["0", "1", "2"], | |
), | |
] | |
def _info(self): | |
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features} | |
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features(features), | |
supervised_keys=("text", "label"), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
if self.config.name == "task01": | |
train_path = dl_manager.download_and_extract(_URL_TRAIN_TASK1) | |
if self.config.name == "task02": | |
train_path = dl_manager.download_and_extract(_URL_TRAIN_TASK2) | |
data_dir_test = dl_manager.download_and_extract(_URL_TEST) | |
if self.config.name == "task01": | |
test_path = os.path.join(data_dir_test, "Task6", "task 01") | |
if self.config.name == "task02": | |
test_path = os.path.join(data_dir_test, "Task6", "task 02") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": train_path, | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": test_path, | |
"split": "test", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
if split == "train": | |
text_path = os.path.join(filepath, "training_set_clean_only_text.txt") | |
label_path = os.path.join(filepath, "training_set_clean_only_tags.txt") | |
if split == "test": | |
if self.config.name == "task01": | |
text_path = os.path.join(filepath, "test_set_clean_only_text.txt") | |
label_path = os.path.join(filepath, "test_set_clean_only_tags.txt") | |
if self.config.name == "task02": | |
text_path = os.path.join(filepath, "test_set_only_text.txt") | |
label_path = os.path.join(filepath, "test_set_only_tags.txt") | |
with open(text_path, encoding="utf-8") as text_file: | |
with open(label_path, encoding="utf-8") as label_file: | |
for id_, (text, label) in enumerate(zip(text_file, label_file)): | |
yield id_, {"text": text.strip(), "label": int(label.strip())} | |