|
|
|
|
|
"""Loading script for DiffusionDB.""" |
|
|
|
import re |
|
import numpy as np |
|
import pandas as pd |
|
|
|
from json import load, dump |
|
from os.path import join, basename |
|
from huggingface_hub import hf_hub_url |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{wangDiffusionDBLargescalePrompt2022, |
|
title = {{{DiffusionDB}}: {{A}} Large-Scale Prompt Gallery Dataset for Text-to-Image Generative Models}, |
|
author = {Wang, Zijie J. and Montoya, Evan and Munechika, David and Yang, Haoyang and Hoover, Benjamin and Chau, Duen Horng}, |
|
year = {2022}, |
|
journal = {arXiv:2210.14896 [cs]}, |
|
url = {https://arxiv.org/abs/2210.14896} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """ |
|
DiffusionDB is the first large-scale text-to-image prompt dataset. It contains 2 |
|
million images generated by Stable Diffusion using prompts and hyperparameters |
|
specified by real users. The unprecedented scale and diversity of this |
|
human-actuated dataset provide exciting research opportunities in understanding |
|
the interplay between prompts and generative models, detecting deepfakes, and |
|
designing human-AI interaction tools to help users more easily use these models. |
|
""" |
|
|
|
_HOMEPAGE = "https://poloclub.github.io/diffusiondb" |
|
_LICENSE = "CC0 1.0" |
|
_VERSION = datasets.Version("0.9.1") |
|
|
|
|
|
|
|
|
|
_URLS = {} |
|
_URLS_LARGE = {} |
|
_PART_IDS = range(1, 2001) |
|
_PART_IDS_LARGE = range(1, 14001) |
|
|
|
for i in _PART_IDS: |
|
_URLS[i] = hf_hub_url( |
|
"datasets/poloclub/diffusiondb", filename=f"images/part-{i:06}.zip" |
|
) |
|
|
|
for i in _PART_IDS_LARGE: |
|
if i < 10001: |
|
_URLS_LARGE[i] = hf_hub_url( |
|
"datasets/poloclub/diffusiondb", |
|
filename=f"diffusiondb-large-part-1/part-{i:06}.zip", |
|
) |
|
else: |
|
_URLS_LARGE[i] = hf_hub_url( |
|
"datasets/poloclub/diffusiondb", |
|
filename=f"diffusiondb-large-part-2/part-{i:06}.zip", |
|
) |
|
|
|
|
|
_URLS["metadata"] = hf_hub_url( |
|
"datasets/poloclub/diffusiondb", filename="metadata.parquet" |
|
) |
|
|
|
_URLS_LARGE["metadata"] = hf_hub_url( |
|
"datasets/poloclub/diffusiondb", filename="metadata-large.parquet" |
|
) |
|
|
|
_SAMPLER_DICT = { |
|
1: "ddim", |
|
2: "plms", |
|
3: "k_euler", |
|
4: "k_euler_ancestral", |
|
5: "ddik_heunm", |
|
6: "k_dpm_2", |
|
7: "k_dpm_2_ancestral", |
|
8: "k_lms", |
|
9: "others", |
|
} |
|
|
|
|
|
class DiffusionDBConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for DiffusionDB.""" |
|
|
|
def __init__(self, part_ids, is_large, **kwargs): |
|
"""BuilderConfig for DiffusionDB. |
|
Args: |
|
part_ids([int]): A list of part_ids. |
|
is_large(bool): If downloading data from DiffusionDB Large (14 million) |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(DiffusionDBConfig, self).__init__(version=_VERSION, **kwargs) |
|
self.part_ids = part_ids |
|
self.is_large = is_large |
|
|
|
|
|
class DiffusionDB(datasets.GeneratorBasedBuilder): |
|
"""A large-scale text-to-image prompt gallery dataset based on Stable Diffusion.""" |
|
|
|
BUILDER_CONFIGS = [] |
|
|
|
|
|
|
|
for num_k in [1, 5, 10, 50, 100, 500, 1000]: |
|
for sampling in ["first", "random"]: |
|
for is_large in [False, True]: |
|
num_k_str = f"{num_k}k" if num_k < 1000 else f"{num_k // 1000}m" |
|
subset_str = "large_" if is_large else "2m_" |
|
|
|
if sampling == "random": |
|
|
|
cur_name = subset_str + "random_" + num_k_str |
|
|
|
|
|
cur_description = ( |
|
f"Random {num_k_str} images with their prompts and parameters" |
|
) |
|
|
|
|
|
total_part_ids = _PART_IDS_LARGE if is_large else _PART_IDS |
|
part_ids = np.random.choice( |
|
total_part_ids, num_k, replace=False |
|
).tolist() |
|
else: |
|
|
|
cur_name = subset_str + "first_" + num_k_str |
|
|
|
|
|
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters" |
|
|
|
|
|
total_part_ids = _PART_IDS_LARGE if is_large else _PART_IDS |
|
part_ids = total_part_ids[1 : num_k + 1] |
|
|
|
|
|
BUILDER_CONFIGS.append( |
|
DiffusionDBConfig( |
|
name=cur_name, |
|
part_ids=part_ids, |
|
is_large=is_large, |
|
description=cur_description, |
|
), |
|
) |
|
|
|
|
|
for num_k in [5000, 10000]: |
|
for sampling in ["first", "random"]: |
|
num_k_str = f"{num_k // 1000}m" |
|
subset_str = "large_" |
|
|
|
if sampling == "random": |
|
|
|
cur_name = subset_str + "random_" + num_k_str |
|
|
|
|
|
cur_description = ( |
|
f"Random {num_k_str} images with their prompts and parameters" |
|
) |
|
|
|
|
|
total_part_ids = _PART_IDS_LARGE |
|
part_ids = np.random.choice( |
|
total_part_ids, num_k, replace=False |
|
).tolist() |
|
else: |
|
|
|
cur_name = subset_str + "first_" + num_k_str |
|
|
|
|
|
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters" |
|
|
|
|
|
total_part_ids = _PART_IDS_LARGE |
|
part_ids = total_part_ids[1 : num_k + 1] |
|
|
|
|
|
BUILDER_CONFIGS.append( |
|
DiffusionDBConfig( |
|
name=cur_name, |
|
part_ids=part_ids, |
|
is_large=True, |
|
description=cur_description, |
|
), |
|
) |
|
|
|
|
|
BUILDER_CONFIGS.append( |
|
DiffusionDBConfig( |
|
name="2m_all", |
|
part_ids=_PART_IDS, |
|
is_large=False, |
|
description="All images with their prompts and parameters", |
|
), |
|
) |
|
|
|
BUILDER_CONFIGS.append( |
|
DiffusionDBConfig( |
|
name="large_all", |
|
part_ids=_PART_IDS_LARGE, |
|
is_large=True, |
|
description="All images with their prompts and parameters", |
|
), |
|
) |
|
|
|
|
|
BUILDER_CONFIGS.append( |
|
DiffusionDBConfig( |
|
name="2m_text_only", |
|
part_ids=[], |
|
is_large=False, |
|
description="Only include all prompts and parameters (no image)", |
|
), |
|
) |
|
|
|
BUILDER_CONFIGS.append( |
|
DiffusionDBConfig( |
|
name="large_text_only", |
|
part_ids=[], |
|
is_large=True, |
|
description="Only include all prompts and parameters (no image)", |
|
), |
|
) |
|
|
|
|
|
DEFAULT_CONFIG_NAME = "2m_random_1k" |
|
|
|
def _info(self): |
|
"""Specify the information of DiffusionDB.""" |
|
|
|
if "text_only" in self.config.name: |
|
features = datasets.Features( |
|
{ |
|
"image_name": datasets.Value("string"), |
|
"prompt": datasets.Value("string"), |
|
"part_id": datasets.Value("uint16"), |
|
"seed": datasets.Value("uint32"), |
|
"step": datasets.Value("uint16"), |
|
"cfg": datasets.Value("float32"), |
|
"sampler": datasets.Value("string"), |
|
"width": datasets.Value("uint16"), |
|
"height": datasets.Value("uint16"), |
|
"user_name": datasets.Value("string"), |
|
"timestamp": datasets.Value("timestamp[us, tz=UTC]"), |
|
"image_nsfw": datasets.Value("float32"), |
|
"prompt_nsfw": datasets.Value("float32"), |
|
}, |
|
) |
|
|
|
else: |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"prompt": datasets.Value("string"), |
|
"seed": datasets.Value("uint32"), |
|
"step": datasets.Value("uint16"), |
|
"cfg": datasets.Value("float32"), |
|
"sampler": datasets.Value("string"), |
|
"width": datasets.Value("uint16"), |
|
"height": datasets.Value("uint16"), |
|
"user_name": datasets.Value("string"), |
|
"timestamp": datasets.Value("timestamp[us, tz=UTC]"), |
|
"image_nsfw": datasets.Value("float32"), |
|
"prompt_nsfw": datasets.Value("float32"), |
|
}, |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_dirs = [] |
|
json_paths = [] |
|
|
|
|
|
if self.config.is_large: |
|
urls = _URLS_LARGE |
|
else: |
|
urls = _URLS |
|
|
|
for cur_part_id in self.config.part_ids: |
|
cur_url = urls[cur_part_id] |
|
data_dir = dl_manager.download_and_extract(cur_url) |
|
|
|
data_dirs.append(data_dir) |
|
json_paths.append(join(data_dir, f"part-{cur_part_id:06}.json")) |
|
|
|
|
|
metadata_path = dl_manager.download(urls["metadata"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"data_dirs": data_dirs, |
|
"json_paths": json_paths, |
|
"metadata_path": metadata_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dirs, json_paths, metadata_path): |
|
|
|
|
|
|
|
|
|
|
|
|
|
if "text_only" in self.config.name: |
|
metadata_df = pd.read_parquet(metadata_path) |
|
for _, row in metadata_df.iterrows(): |
|
yield row["image_name"], { |
|
"image_name": row["image_name"], |
|
"prompt": row["prompt"], |
|
"part_id": row["part_id"], |
|
"seed": row["seed"], |
|
"step": row["step"], |
|
"cfg": row["cfg"], |
|
"sampler": _SAMPLER_DICT[int(row["sampler"])], |
|
"width": row["width"], |
|
"height": row["height"], |
|
"user_name": row["user_name"], |
|
"timestamp": row["timestamp"], |
|
"image_nsfw": row["image_nsfw"], |
|
"prompt_nsfw": row["prompt_nsfw"], |
|
} |
|
|
|
else: |
|
num_data_dirs = len(data_dirs) |
|
assert num_data_dirs == len(json_paths) |
|
|
|
|
|
part_ids = [] |
|
for path in json_paths: |
|
cur_id = int(re.sub(r"part-(\d+)\.json", r"\1", basename(path))) |
|
part_ids.append(cur_id) |
|
|
|
|
|
|
|
metadata_table = pd.read_parquet( |
|
metadata_path, |
|
filters=[("part_id", "in", part_ids)], |
|
) |
|
|
|
|
|
for k in range(num_data_dirs): |
|
cur_data_dir = data_dirs[k] |
|
cur_json_path = json_paths[k] |
|
|
|
json_data = load(open(cur_json_path, "r", encoding="utf8")) |
|
|
|
for img_name in json_data: |
|
img_params = json_data[img_name] |
|
img_path = join(cur_data_dir, img_name) |
|
|
|
|
|
query_result = metadata_table.query(f'`image_name` == "{img_name}"') |
|
|
|
|
|
yield img_name, { |
|
"image": { |
|
"path": img_path, |
|
"bytes": open(img_path, "rb").read(), |
|
}, |
|
"prompt": img_params["p"], |
|
"seed": int(img_params["se"]), |
|
"step": int(img_params["st"]), |
|
"cfg": float(img_params["c"]), |
|
"sampler": img_params["sa"], |
|
"width": query_result["width"].to_list()[0], |
|
"height": query_result["height"].to_list()[0], |
|
"user_name": query_result["user_name"].to_list()[0], |
|
"timestamp": query_result["timestamp"].to_list()[0], |
|
"image_nsfw": query_result["image_nsfw"].to_list()[0], |
|
"prompt_nsfw": query_result["prompt_nsfw"].to_list()[0], |
|
} |
|
|