Datasets:
Update loading script
Browse files- README.md +3 -3
- diffusiondb.py +165 -27
README.md
CHANGED
@@ -89,7 +89,7 @@ task_ids:
|
|
89 |
|
90 |
### Dataset Summary
|
91 |
|
92 |
-
DiffusionDB is the first large-scale text-to-image prompt dataset. It contains 14 million images generated by Stable Diffusion using prompts and hyperparameters specified by real users.
|
93 |
|
94 |
DiffusionDB is publicly available at [🤗 Hugging Face Dataset](https://huggingface.co/datasets/poloclub/diffusiondb).
|
95 |
|
@@ -247,8 +247,8 @@ You can use the Hugging Face [`Datasets`](https://huggingface.co/docs/datasets/q
|
|
247 |
import numpy as np
|
248 |
from datasets import load_dataset
|
249 |
|
250 |
-
# Load the dataset with the `random_1k` subset
|
251 |
-
dataset = load_dataset('poloclub/diffusiondb', 'random_1k')
|
252 |
```
|
253 |
|
254 |
#### Method 2. Use the PoloClub Downloader
|
|
|
89 |
|
90 |
### Dataset Summary
|
91 |
|
92 |
+
DiffusionDB is the first large-scale text-to-image prompt dataset. It contains **14 million** images generated by Stable Diffusion using prompts and hyperparameters specified by real users.
|
93 |
|
94 |
DiffusionDB is publicly available at [🤗 Hugging Face Dataset](https://huggingface.co/datasets/poloclub/diffusiondb).
|
95 |
|
|
|
247 |
import numpy as np
|
248 |
from datasets import load_dataset
|
249 |
|
250 |
+
# Load the dataset with the `random_1k [large]` subset
|
251 |
+
dataset = load_dataset('poloclub/diffusiondb', 'random_1k [large]')
|
252 |
```
|
253 |
|
254 |
#### Method 2. Use the PoloClub Downloader
|
diffusiondb.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
# MIT License
|
3 |
"""Loading script for DiffusionDB."""
|
4 |
|
|
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
|
@@ -10,6 +11,8 @@ from os.path import join, basename
|
|
10 |
from huggingface_hub import hf_hub_url
|
11 |
|
12 |
import datasets
|
|
|
|
|
13 |
|
14 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
15 |
_CITATION = """\
|
@@ -34,22 +37,40 @@ designing human-AI interaction tools to help users more easily use these models.
|
|
34 |
|
35 |
_HOMEPAGE = "https://poloclub.github.io/diffusiondb"
|
36 |
_LICENSE = "CC0 1.0"
|
37 |
-
_VERSION = datasets.Version("0.9.
|
38 |
|
39 |
# Programmatically generate the URLs for different parts
|
40 |
# hf_hub_url() provides a more flexible way to resolve the file URLs
|
41 |
# https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/images/part-000001.zip
|
42 |
_URLS = {}
|
|
|
43 |
_PART_IDS = range(1, 2001)
|
|
|
44 |
|
45 |
for i in _PART_IDS:
|
46 |
_URLS[i] = hf_hub_url(
|
47 |
"datasets/poloclub/diffusiondb", filename=f"images/part-{i:06}.zip"
|
48 |
)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# Add the metadata parquet URL as well
|
51 |
_URLS["metadata"] = hf_hub_url(
|
52 |
-
"datasets/poloclub/diffusiondb", filename=
|
|
|
|
|
|
|
|
|
53 |
)
|
54 |
|
55 |
_SAMPLER_DICT = {
|
@@ -68,14 +89,16 @@ _SAMPLER_DICT = {
|
|
68 |
class DiffusionDBConfig(datasets.BuilderConfig):
|
69 |
"""BuilderConfig for DiffusionDB."""
|
70 |
|
71 |
-
def __init__(self, part_ids, **kwargs):
|
72 |
"""BuilderConfig for DiffusionDB.
|
73 |
Args:
|
74 |
part_ids([int]): A list of part_ids.
|
|
|
75 |
**kwargs: keyword arguments forwarded to super.
|
76 |
"""
|
77 |
super(DiffusionDBConfig, self).__init__(version=_VERSION, **kwargs)
|
78 |
self.part_ids = part_ids
|
|
|
79 |
|
80 |
|
81 |
class DiffusionDB(datasets.GeneratorBasedBuilder):
|
@@ -87,11 +110,54 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
87 |
# as the config key)
|
88 |
for num_k in [1, 5, 10, 50, 100, 500, 1000]:
|
89 |
for sampling in ["first", "random"]:
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
if sampling == "random":
|
93 |
# Name the config
|
94 |
-
cur_name = "random_" + num_k_str
|
95 |
|
96 |
# Add a short description for each config
|
97 |
cur_description = (
|
@@ -99,31 +165,46 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
99 |
)
|
100 |
|
101 |
# Sample part_ids
|
102 |
-
|
|
|
|
|
|
|
103 |
else:
|
104 |
# Name the config
|
105 |
-
cur_name = "first_" + num_k_str
|
106 |
|
107 |
# Add a short description for each config
|
108 |
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
109 |
|
110 |
# Sample part_ids
|
111 |
-
|
|
|
112 |
|
113 |
# Create configs
|
114 |
BUILDER_CONFIGS.append(
|
115 |
DiffusionDBConfig(
|
116 |
name=cur_name,
|
117 |
part_ids=part_ids,
|
|
|
118 |
description=cur_description,
|
119 |
),
|
120 |
)
|
121 |
|
122 |
-
#
|
123 |
BUILDER_CONFIGS.append(
|
124 |
DiffusionDBConfig(
|
125 |
-
name="all",
|
126 |
part_ids=_PART_IDS,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
description="All images with their prompts and parameters",
|
128 |
),
|
129 |
)
|
@@ -131,28 +212,44 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
131 |
# We also prove a text-only option, which loads the meatadata parquet file
|
132 |
BUILDER_CONFIGS.append(
|
133 |
DiffusionDBConfig(
|
134 |
-
name="text_only",
|
135 |
part_ids=[],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
description="Only include all prompts and parameters (no image)",
|
137 |
),
|
138 |
)
|
139 |
|
140 |
# Default to only load 1k random images
|
141 |
-
DEFAULT_CONFIG_NAME = "random_1k"
|
142 |
|
143 |
def _info(self):
|
144 |
"""Specify the information of DiffusionDB."""
|
145 |
|
146 |
-
if self.config.name
|
147 |
features = datasets.Features(
|
148 |
{
|
149 |
"image_name": datasets.Value("string"),
|
150 |
"prompt": datasets.Value("string"),
|
151 |
-
"part_id": datasets.Value("
|
152 |
-
"seed": datasets.Value("
|
153 |
-
"step": datasets.Value("
|
154 |
"cfg": datasets.Value("float32"),
|
155 |
"sampler": datasets.Value("string"),
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
},
|
157 |
)
|
158 |
|
@@ -161,10 +258,16 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
161 |
{
|
162 |
"image": datasets.Image(),
|
163 |
"prompt": datasets.Value("string"),
|
164 |
-
"seed": datasets.Value("
|
165 |
-
"step": datasets.Value("
|
166 |
"cfg": datasets.Value("float32"),
|
167 |
"sampler": datasets.Value("string"),
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
},
|
169 |
)
|
170 |
|
@@ -192,17 +295,21 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
192 |
data_dirs = []
|
193 |
json_paths = []
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
for cur_part_id in self.config.part_ids:
|
196 |
-
cur_url =
|
197 |
data_dir = dl_manager.download_and_extract(cur_url)
|
198 |
|
199 |
data_dirs.append(data_dir)
|
200 |
json_paths.append(join(data_dir, f"part-{cur_part_id:06}.json"))
|
201 |
|
202 |
-
#
|
203 |
-
|
204 |
-
if self.config.name == "text_only":
|
205 |
-
data_dirs = [dl_manager.download(_URLS["metadata"])]
|
206 |
|
207 |
return [
|
208 |
datasets.SplitGenerator(
|
@@ -211,19 +318,20 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
211 |
gen_kwargs={
|
212 |
"data_dirs": data_dirs,
|
213 |
"json_paths": json_paths,
|
|
|
214 |
},
|
215 |
),
|
216 |
]
|
217 |
|
218 |
-
def _generate_examples(self, data_dirs, json_paths):
|
219 |
# This method handles input defined in _split_generators to yield
|
220 |
# (key, example) tuples from the dataset.
|
221 |
# The `key` is for legacy reasons (tfds) and is not important in itself,
|
222 |
# but must be unique for each example.
|
223 |
|
224 |
# Load the metadata parquet file if the config is text_only
|
225 |
-
if self.config.name
|
226 |
-
metadata_df = pd.read_parquet(
|
227 |
for _, row in metadata_df.iterrows():
|
228 |
yield row["image_name"], {
|
229 |
"image_name": row["image_name"],
|
@@ -233,13 +341,31 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
233 |
"step": row["step"],
|
234 |
"cfg": row["cfg"],
|
235 |
"sampler": _SAMPLER_DICT[int(row["sampler"])],
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
}
|
237 |
|
238 |
else:
|
239 |
-
# Iterate through all extracted zip folders for images
|
240 |
num_data_dirs = len(data_dirs)
|
241 |
assert num_data_dirs == len(json_paths)
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
for k in range(num_data_dirs):
|
244 |
cur_data_dir = data_dirs[k]
|
245 |
cur_json_path = json_paths[k]
|
@@ -250,6 +376,12 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
250 |
img_params = json_data[img_name]
|
251 |
img_path = join(cur_data_dir, img_name)
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
# Yields examples as (key, example) tuples
|
254 |
yield img_name, {
|
255 |
"image": {
|
@@ -261,4 +393,10 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
261 |
"step": int(img_params["st"]),
|
262 |
"cfg": float(img_params["c"]),
|
263 |
"sampler": img_params["sa"],
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
}
|
|
|
2 |
# MIT License
|
3 |
"""Loading script for DiffusionDB."""
|
4 |
|
5 |
+
import re
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
|
|
|
11 |
from huggingface_hub import hf_hub_url
|
12 |
|
13 |
import datasets
|
14 |
+
import pyarrow as pa
|
15 |
+
import pyarrow.parquet as pq
|
16 |
|
17 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
18 |
_CITATION = """\
|
|
|
37 |
|
38 |
_HOMEPAGE = "https://poloclub.github.io/diffusiondb"
|
39 |
_LICENSE = "CC0 1.0"
|
40 |
+
_VERSION = datasets.Version("0.9.1")
|
41 |
|
42 |
# Programmatically generate the URLs for different parts
|
43 |
# hf_hub_url() provides a more flexible way to resolve the file URLs
|
44 |
# https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/images/part-000001.zip
|
45 |
_URLS = {}
|
46 |
+
_URLS_LARGE = {}
|
47 |
_PART_IDS = range(1, 2001)
|
48 |
+
_PART_IDS_LARGE = range(1, 14001)
|
49 |
|
50 |
for i in _PART_IDS:
|
51 |
_URLS[i] = hf_hub_url(
|
52 |
"datasets/poloclub/diffusiondb", filename=f"images/part-{i:06}.zip"
|
53 |
)
|
54 |
|
55 |
+
for i in _PART_IDS_LARGE:
|
56 |
+
if i < 10001:
|
57 |
+
_URLS_LARGE[i] = hf_hub_url(
|
58 |
+
"datasets/poloclub/diffusiondb",
|
59 |
+
filename=f"diffusiondb-large-part-1/part-{i:06}.zip",
|
60 |
+
)
|
61 |
+
else:
|
62 |
+
_URLS_LARGE[i] = hf_hub_url(
|
63 |
+
"datasets/poloclub/diffusiondb",
|
64 |
+
filename=f"diffusiondb-large-part-2/part-{i:06}.zip",
|
65 |
+
)
|
66 |
+
|
67 |
# Add the metadata parquet URL as well
|
68 |
_URLS["metadata"] = hf_hub_url(
|
69 |
+
"datasets/poloclub/diffusiondb", filename="metadata.parquet"
|
70 |
+
)
|
71 |
+
|
72 |
+
_URLS_LARGE["metadata"] = hf_hub_url(
|
73 |
+
"datasets/poloclub/diffusiondb", filename="metadata-large.parquet"
|
74 |
)
|
75 |
|
76 |
_SAMPLER_DICT = {
|
|
|
89 |
class DiffusionDBConfig(datasets.BuilderConfig):
|
90 |
"""BuilderConfig for DiffusionDB."""
|
91 |
|
92 |
+
def __init__(self, part_ids, is_large, **kwargs):
|
93 |
"""BuilderConfig for DiffusionDB.
|
94 |
Args:
|
95 |
part_ids([int]): A list of part_ids.
|
96 |
+
is_large(bool): If downloading data from DiffusionDB Large (14 million)
|
97 |
**kwargs: keyword arguments forwarded to super.
|
98 |
"""
|
99 |
super(DiffusionDBConfig, self).__init__(version=_VERSION, **kwargs)
|
100 |
self.part_ids = part_ids
|
101 |
+
self.is_large = is_large
|
102 |
|
103 |
|
104 |
class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
|
110 |
# as the config key)
|
111 |
for num_k in [1, 5, 10, 50, 100, 500, 1000]:
|
112 |
for sampling in ["first", "random"]:
|
113 |
+
for is_large in [False, True]:
|
114 |
+
num_k_str = f"{num_k}k" if num_k < 1000 else f"{num_k // 1000}m"
|
115 |
+
subset_str = " [large]" if is_large else " [2m]"
|
116 |
+
|
117 |
+
if sampling == "random":
|
118 |
+
# Name the config
|
119 |
+
cur_name = "random_" + num_k_str + subset_str
|
120 |
+
|
121 |
+
# Add a short description for each config
|
122 |
+
cur_description = (
|
123 |
+
f"Random {num_k_str} images with their prompts and parameters"
|
124 |
+
)
|
125 |
+
|
126 |
+
# Sample part_ids
|
127 |
+
total_part_ids = _PART_IDS_LARGE if is_large else _PART_IDS
|
128 |
+
part_ids = np.random.choice(
|
129 |
+
total_part_ids, num_k, replace=False
|
130 |
+
).tolist()
|
131 |
+
else:
|
132 |
+
# Name the config
|
133 |
+
cur_name = "first_" + num_k_str + subset_str
|
134 |
+
|
135 |
+
# Add a short description for each config
|
136 |
+
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
137 |
+
|
138 |
+
# Sample part_ids
|
139 |
+
total_part_ids = _PART_IDS_LARGE if is_large else _PART_IDS
|
140 |
+
part_ids = total_part_ids[1 : num_k + 1]
|
141 |
+
|
142 |
+
# Create configs
|
143 |
+
BUILDER_CONFIGS.append(
|
144 |
+
DiffusionDBConfig(
|
145 |
+
name=cur_name,
|
146 |
+
part_ids=part_ids,
|
147 |
+
is_large=is_large,
|
148 |
+
description=cur_description,
|
149 |
+
),
|
150 |
+
)
|
151 |
+
|
152 |
+
# Add few more options for Large only
|
153 |
+
for num_k in [5000, 10000]:
|
154 |
+
for sampling in ["first", "random"]:
|
155 |
+
num_k_str = f"{num_k // 1000}m"
|
156 |
+
subset_str = " [large]"
|
157 |
|
158 |
if sampling == "random":
|
159 |
# Name the config
|
160 |
+
cur_name = "random_" + num_k_str + subset_str
|
161 |
|
162 |
# Add a short description for each config
|
163 |
cur_description = (
|
|
|
165 |
)
|
166 |
|
167 |
# Sample part_ids
|
168 |
+
total_part_ids = _PART_IDS_LARGE
|
169 |
+
part_ids = np.random.choice(
|
170 |
+
total_part_ids, num_k, replace=False
|
171 |
+
).tolist()
|
172 |
else:
|
173 |
# Name the config
|
174 |
+
cur_name = "first_" + num_k_str + subset_str
|
175 |
|
176 |
# Add a short description for each config
|
177 |
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
178 |
|
179 |
# Sample part_ids
|
180 |
+
total_part_ids = _PART_IDS_LARGE
|
181 |
+
part_ids = total_part_ids[1 : num_k + 1]
|
182 |
|
183 |
# Create configs
|
184 |
BUILDER_CONFIGS.append(
|
185 |
DiffusionDBConfig(
|
186 |
name=cur_name,
|
187 |
part_ids=part_ids,
|
188 |
+
is_large=True,
|
189 |
description=cur_description,
|
190 |
),
|
191 |
)
|
192 |
|
193 |
+
# Need to manually add all (2m) and all (large)
|
194 |
BUILDER_CONFIGS.append(
|
195 |
DiffusionDBConfig(
|
196 |
+
name="all [2m]",
|
197 |
part_ids=_PART_IDS,
|
198 |
+
is_large=False,
|
199 |
+
description="All images with their prompts and parameters",
|
200 |
+
),
|
201 |
+
)
|
202 |
+
|
203 |
+
BUILDER_CONFIGS.append(
|
204 |
+
DiffusionDBConfig(
|
205 |
+
name="all [large]",
|
206 |
+
part_ids=_PART_IDS_LARGE,
|
207 |
+
is_large=True,
|
208 |
description="All images with their prompts and parameters",
|
209 |
),
|
210 |
)
|
|
|
212 |
# We also prove a text-only option, which loads the meatadata parquet file
|
213 |
BUILDER_CONFIGS.append(
|
214 |
DiffusionDBConfig(
|
215 |
+
name="text_only [2m]",
|
216 |
part_ids=[],
|
217 |
+
is_large=False,
|
218 |
+
description="Only include all prompts and parameters (no image)",
|
219 |
+
),
|
220 |
+
)
|
221 |
+
|
222 |
+
BUILDER_CONFIGS.append(
|
223 |
+
DiffusionDBConfig(
|
224 |
+
name="text_only [large]",
|
225 |
+
part_ids=[],
|
226 |
+
is_large=True,
|
227 |
description="Only include all prompts and parameters (no image)",
|
228 |
),
|
229 |
)
|
230 |
|
231 |
# Default to only load 1k random images
|
232 |
+
DEFAULT_CONFIG_NAME = "random_1k [2m]"
|
233 |
|
234 |
def _info(self):
|
235 |
"""Specify the information of DiffusionDB."""
|
236 |
|
237 |
+
if "text_only" in self.config.name:
|
238 |
features = datasets.Features(
|
239 |
{
|
240 |
"image_name": datasets.Value("string"),
|
241 |
"prompt": datasets.Value("string"),
|
242 |
+
"part_id": datasets.Value("uint16"),
|
243 |
+
"seed": datasets.Value("uint32"),
|
244 |
+
"step": datasets.Value("uint16"),
|
245 |
"cfg": datasets.Value("float32"),
|
246 |
"sampler": datasets.Value("string"),
|
247 |
+
"width": datasets.Value("uint16"),
|
248 |
+
"height": datasets.Value("uint16"),
|
249 |
+
"user_name": datasets.Value("string"),
|
250 |
+
"timestamp": datasets.Value("timestamp[us, tz=UTC]"),
|
251 |
+
"image_nsfw": datasets.Value("float32"),
|
252 |
+
"prompt_nsfw": datasets.Value("float32"),
|
253 |
},
|
254 |
)
|
255 |
|
|
|
258 |
{
|
259 |
"image": datasets.Image(),
|
260 |
"prompt": datasets.Value("string"),
|
261 |
+
"seed": datasets.Value("uint32"),
|
262 |
+
"step": datasets.Value("uint16"),
|
263 |
"cfg": datasets.Value("float32"),
|
264 |
"sampler": datasets.Value("string"),
|
265 |
+
"width": datasets.Value("uint16"),
|
266 |
+
"height": datasets.Value("uint16"),
|
267 |
+
"user_name": datasets.Value("string"),
|
268 |
+
"timestamp": datasets.Value("timestamp[us, tz=UTC]"),
|
269 |
+
"image_nsfw": datasets.Value("float32"),
|
270 |
+
"prompt_nsfw": datasets.Value("float32"),
|
271 |
},
|
272 |
)
|
273 |
|
|
|
295 |
data_dirs = []
|
296 |
json_paths = []
|
297 |
|
298 |
+
# Resolve the urls
|
299 |
+
if self.config.is_large:
|
300 |
+
urls = _URLS_LARGE
|
301 |
+
else:
|
302 |
+
urls = _URLS
|
303 |
+
|
304 |
for cur_part_id in self.config.part_ids:
|
305 |
+
cur_url = urls[cur_part_id]
|
306 |
data_dir = dl_manager.download_and_extract(cur_url)
|
307 |
|
308 |
data_dirs.append(data_dir)
|
309 |
json_paths.append(join(data_dir, f"part-{cur_part_id:06}.json"))
|
310 |
|
311 |
+
# Also download the metadata table
|
312 |
+
metadata_path = dl_manager.download(urls["metadata"])
|
|
|
|
|
313 |
|
314 |
return [
|
315 |
datasets.SplitGenerator(
|
|
|
318 |
gen_kwargs={
|
319 |
"data_dirs": data_dirs,
|
320 |
"json_paths": json_paths,
|
321 |
+
"metadata_path": metadata_path,
|
322 |
},
|
323 |
),
|
324 |
]
|
325 |
|
326 |
+
def _generate_examples(self, data_dirs, json_paths, metadata_path):
|
327 |
# This method handles input defined in _split_generators to yield
|
328 |
# (key, example) tuples from the dataset.
|
329 |
# The `key` is for legacy reasons (tfds) and is not important in itself,
|
330 |
# but must be unique for each example.
|
331 |
|
332 |
# Load the metadata parquet file if the config is text_only
|
333 |
+
if "text_only" in self.config.name:
|
334 |
+
metadata_df = pd.read_parquet(metadata_path)
|
335 |
for _, row in metadata_df.iterrows():
|
336 |
yield row["image_name"], {
|
337 |
"image_name": row["image_name"],
|
|
|
341 |
"step": row["step"],
|
342 |
"cfg": row["cfg"],
|
343 |
"sampler": _SAMPLER_DICT[int(row["sampler"])],
|
344 |
+
"width": row["width"],
|
345 |
+
"height": row["height"],
|
346 |
+
"user_name": row["user_name"],
|
347 |
+
"timestamp": row["timestamp"],
|
348 |
+
"image_nsfw": row["image_nsfw"],
|
349 |
+
"prompt_nsfw": row["prompt_nsfw"],
|
350 |
}
|
351 |
|
352 |
else:
|
|
|
353 |
num_data_dirs = len(data_dirs)
|
354 |
assert num_data_dirs == len(json_paths)
|
355 |
|
356 |
+
# Read the metadata table (only rows with the needed part_ids)
|
357 |
+
part_ids = []
|
358 |
+
for path in json_paths:
|
359 |
+
cur_id = int(re.sub(r"part-(\d+)\.json", r"\1", basename(path)))
|
360 |
+
part_ids.append(cur_id)
|
361 |
+
|
362 |
+
metadata_table = pq.read_table(
|
363 |
+
metadata_path,
|
364 |
+
filters=[("part_id", "in", part_ids)],
|
365 |
+
)
|
366 |
+
print(metadata_table.shape)
|
367 |
+
|
368 |
+
# Iterate through all extracted zip folders for images
|
369 |
for k in range(num_data_dirs):
|
370 |
cur_data_dir = data_dirs[k]
|
371 |
cur_json_path = json_paths[k]
|
|
|
376 |
img_params = json_data[img_name]
|
377 |
img_path = join(cur_data_dir, img_name)
|
378 |
|
379 |
+
# Query the meta data
|
380 |
+
row_mask = pa.compute.equal(
|
381 |
+
metadata_table.column("image_name"), img_name
|
382 |
+
)
|
383 |
+
query_result = metadata_table.filter(row_mask)
|
384 |
+
|
385 |
# Yields examples as (key, example) tuples
|
386 |
yield img_name, {
|
387 |
"image": {
|
|
|
393 |
"step": int(img_params["st"]),
|
394 |
"cfg": float(img_params["c"]),
|
395 |
"sampler": img_params["sa"],
|
396 |
+
"width": query_result["width"][0].as_py(),
|
397 |
+
"height": query_result["height"][0].as_py(),
|
398 |
+
"user_name": query_result["user_name"][0].as_py(),
|
399 |
+
"timestamp": query_result["timestamp"][0].as_py(),
|
400 |
+
"image_nsfw": query_result["image_nsfw"][0].as_py(),
|
401 |
+
"prompt_nsfw": query_result["prompt_nsfw"][0].as_py(),
|
402 |
}
|