File size: 38,178 Bytes
1cc6764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Convert\n",
    "Converts dataset from NIST-In-Situ-IN625-LPBF-Overhangs to masked dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import matplotlib.colors as colors\n",
    "import numpy as np\n",
    "import torch\n",
    "\n",
    "from datasets import load_dataset\n",
    "from tqdm import tqdm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1.22k/1.22k [00:00<00:00, 3.49MB/s]\n"
     ]
    }
   ],
   "source": [
    "dataset = load_dataset(\n",
    "    \"ppak10/NIST-In-Situ-IN625-LPBF-Overhangs\",\n",
    "    \"frames\",\n",
    "    split = \"data\",\n",
    "    num_proc = 20,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['frame_index', 'folder_layer_range', 'part', 'part_section', 'process', 'source', 'supports', 'layer_number', 'build_time', 'contact_email', 'file_name', 'hatch_spacing', 'laser_power', 'layer_thickness', 'material', 'radiant_temp', 'raw_frame_number', 'resolution', 's_hvariable__a', 's_hvariable__b', 's_hvariable__c', 'scan_speed', 'website']\n"
     ]
    }
   ],
   "source": [
    "print(dataset.column_names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['frame_index', 'layer_number', 'radiant_temp', 'scan_speed', 'laser_power']\n"
     ]
    }
   ],
   "source": [
    "select_dataset = dataset.select_columns([\"frame_index\", \"layer_number\", \"radiant_temp\", \"scan_speed\", \"laser_power\"])\n",
    "print(select_dataset.column_names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image_size = 64"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_spherical_mask(shape, center, radius):\n",
    "    \"\"\"\n",
    "    Create a spherical mask.\n",
    "\n",
    "    Parameters:\n",
    "    - shape: Tuple specifying the shape of the mask (e.g., (height, width))\n",
    "    - center: Tuple specifying the center of the sphere (e.g., (center_y, center_x))\n",
    "    - radius: Radius of the sphere\n",
    "\n",
    "    Returns:\n",
    "    - mask: NumPy array representing the spherical mask\n",
    "    \"\"\"\n",
    "    # Create grid of coordinates\n",
    "    y, x = np.ogrid[:shape[0], :shape[1]]\n",
    "    \n",
    "    # Calculate distance from each point to the center\n",
    "    distance_from_center = np.sqrt((x - center[1])**2 + (y - center[0])**2)\n",
    "    \n",
    "    # Create mask where values inside the sphere are set to 1 and outside to 0\n",
    "    mask = distance_from_center > radius\n",
    "    \n",
    "    return mask.astype(int)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def crop_and_mask(example):\n",
    "    # Convert radiant temperature to numpy array.\n",
    "    frame = np.array(example[\"radiant_temp\"])\n",
    "\n",
    "    # Find the max temperature\n",
    "    y, x = np.unravel_index(frame.argmax(), frame.shape)\n",
    "\n",
    "    # Find the cropping boundaries\n",
    "    x_crop_start_index = x - image_size // 2\n",
    "    x_crop_stop_index = x + image_size // 2\n",
    "    y_crop_start_index = y - image_size // 2\n",
    "    y_crop_stop_index = y + image_size // 2\n",
    "\n",
    "    # Bound the cropping boundaries to be within frame\n",
    "    x_crop_start = max(0, x_crop_start_index)\n",
    "    x_crop_stop = min(x_crop_stop_index, frame.shape[1])\n",
    "    y_crop_start = max(0, y_crop_start_index)\n",
    "    y_crop_stop = min(y_crop_stop_index, frame.shape[0])\n",
    "\n",
    "    # Negative index values indicate padding needed\n",
    "    x_crop_start_padding = min(0, x_crop_start_index)\n",
    "    x_crop_stop_padding = min(0, frame.shape[1] - x_crop_stop_index)\n",
    "    y_crop_start_padding = min(0, y_crop_start_index)\n",
    "    y_crop_stop_padding = min(0, frame.shape[0] - y_crop_stop_index)\n",
    "\n",
    "    # Add padding to negative crops\n",
    "    def add_zeros_top(array, num_rows):\n",
    "        return np.concatenate((np.zeros((num_rows, array.shape[1])), array), axis=0)\n",
    "\n",
    "    def add_zeros_left(array, num_cols):\n",
    "        return np.concatenate((np.zeros((array.shape[0], num_cols)), array), axis=1)\n",
    "\n",
    "    def add_zeros_right(array, num_cols):\n",
    "        return np.concatenate((array, np.zeros((array.shape[0], num_cols))), axis=1)\n",
    "\n",
    "    def add_zeros_bottom(array, num_rows):\n",
    "        return np.concatenate((array, np.zeros((num_rows, array.shape[1]))), axis=0)\n",
    "\n",
    "    # Apply crop paddings\n",
    "    frame_cropped = frame[y_crop_start:y_crop_stop, x_crop_start:x_crop_stop]\n",
    "    # print(frame_cropped.shape)\n",
    "    frame_cropped = add_zeros_top(frame_cropped, abs(y_crop_start_padding))\n",
    "    # print(y_crop_start_padding, y_crop_start_padding, frame_cropped.shape)\n",
    "    frame_cropped = add_zeros_bottom(frame_cropped, abs(y_crop_stop_padding))\n",
    "    # print(y_crop_stop_padding, y_crop_stop_padding,frame_cropped.shape)\n",
    "    frame_cropped = add_zeros_left(frame_cropped, abs(x_crop_start_padding))\n",
    "    # print(x_crop_start_padding, x_crop_start_padding, frame_cropped.shape)\n",
    "    frame_cropped = add_zeros_right(frame_cropped, abs(x_crop_stop_padding))\n",
    "    # print(x_crop_stop_padding, x_crop_stop_padding,frame_cropped.shape)\n",
    "\n",
    "    # Turns 0s to 1s to allow 0 value for mask\n",
    "    frame_cropped = np.where(frame_cropped == 0, 1, frame_cropped).astype(int)\n",
    "\n",
    "    # Find index of max temp after crop\n",
    "    cropped_y, cropped_x = np.unravel_index(frame_cropped.argmax(), frame_cropped.shape)\n",
    "\n",
    "    # Example usage\n",
    "    shape = (image_size, image_size)  # Shape of the mask\n",
    "    center = (cropped_y, cropped_x)   # Center of the sphere\n",
    "    radius = 5         # Radius of the sphere\n",
    "    \n",
    "    # Create spherical mask\n",
    "    mask = create_spherical_mask(shape, center, radius)\n",
    "    masked_frame = frame_cropped * mask\n",
    "\n",
    "    example[\"mask\"] = mask\n",
    "    example[\"masked_frame\"] = masked_frame\n",
    "    example[\"target\"] = frame_cropped\n",
    "    example[\"radius\"] = radius\n",
    "    example[\"center\"] = center\n",
    "    return example\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Map (num_proc=20):  50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 349980/706074 [12:21<12:34, 472.14 examples/s]  \n"
     ]
    },
    {
     "ename": "OSError",
     "evalue": "[Errno 28] No space left on device",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mRemoteTraceback\u001b[0m                           Traceback (most recent call last)",
      "\u001b[0;31mRemoteTraceback\u001b[0m: \n\"\"\"\nTraceback (most recent call last):\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 3533, in _map_single\n    writer.write(example)\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 500, in write\n    self.write_examples_on_file()\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 458, in write_examples_on_file\n    self.write_batch(batch_examples=batch_examples)\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 572, in write_batch\n    self.write_table(pa_table, writer_batch_size)\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 590, in write_table\n    self.pa_writer.write_table(pa_table, writer_batch_size)\n  File \"pyarrow/ipc.pxi\", line 529, in pyarrow.lib._CRecordBatchWriter.write_table\n  File \"pyarrow/error.pxi\", line 88, in pyarrow.lib.check_status\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/fsspec/implementations/local.py\", line 389, in write\n    return self.f.write(*args, **kwargs)\nOSError: [Errno 28] No space left on device\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 3582, in _map_single\n    writer.finalize()\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 599, in finalize\n    self.write_examples_on_file()\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 458, in write_examples_on_file\n    self.write_batch(batch_examples=batch_examples)\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 572, in write_batch\n    self.write_table(pa_table, writer_batch_size)\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 590, in write_table\n    self.pa_writer.write_table(pa_table, writer_batch_size)\n  File \"pyarrow/ipc.pxi\", line 529, in pyarrow.lib._CRecordBatchWriter.write_table\n  File \"pyarrow/error.pxi\", line 88, in pyarrow.lib.check_status\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/fsspec/implementations/local.py\", line 389, in write\n    return self.f.write(*args, **kwargs)\nOSError: [Errno 28] No space left on device\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/multiprocess/pool.py\", line 125, in worker\n    result = (True, func(*args, **kwds))\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 675, in _write_generator_to_queue\n    for i, result in enumerate(func(**kwargs)):\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 3587, in _map_single\n    raise\n  File \"/usr/lib/python3.8/contextlib.py\", line 525, in __exit__\n    raise exc_details[1]\n  File \"/usr/lib/python3.8/contextlib.py\", line 510, in __exit__\n    if cb(*exc_details):\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 369, in __exit__\n    self.close()\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 379, in close\n    self.stream.close()  # This also closes self.pa_writer if it is opened\n  File \"/home/ppak/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/fsspec/implementations/local.py\", line 407, in close\n    return self.f.close()\nOSError: [Errno 28] No space left on device\n\"\"\"",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[0;31mOSError\u001b[0m                                   Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[28], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m converted_dataset \u001b[38;5;241m=\u001b[39m \u001b[43mselect_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmap\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcrop_and_mask\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m20\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m      2\u001b[0m \u001b[38;5;28mprint\u001b[39m(converted_dataset\u001b[38;5;241m.\u001b[39mcolumn_names)\n",
      "File \u001b[0;32m~/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:602\u001b[0m, in \u001b[0;36mtransmit_tasks.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    600\u001b[0m     \u001b[38;5;28mself\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mself\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    601\u001b[0m \u001b[38;5;66;03m# apply actual function\u001b[39;00m\n\u001b[0;32m--> 602\u001b[0m out: Union[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDatasetDict\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    603\u001b[0m datasets: List[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(out\u001b[38;5;241m.\u001b[39mvalues()) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(out, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m [out]\n\u001b[1;32m    604\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m dataset \u001b[38;5;129;01min\u001b[39;00m datasets:\n\u001b[1;32m    605\u001b[0m     \u001b[38;5;66;03m# Remove task templates if a column mapping of the template is no longer valid\u001b[39;00m\n",
      "File \u001b[0;32m~/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:567\u001b[0m, in \u001b[0;36mtransmit_format.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    560\u001b[0m self_format \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m    561\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtype\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_type,\n\u001b[1;32m    562\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mformat_kwargs\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_kwargs,\n\u001b[1;32m    563\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcolumns\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_columns,\n\u001b[1;32m    564\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moutput_all_columns\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_output_all_columns,\n\u001b[1;32m    565\u001b[0m }\n\u001b[1;32m    566\u001b[0m \u001b[38;5;66;03m# apply actual function\u001b[39;00m\n\u001b[0;32m--> 567\u001b[0m out: Union[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDatasetDict\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    568\u001b[0m datasets: List[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataset\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(out\u001b[38;5;241m.\u001b[39mvalues()) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(out, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m [out]\n\u001b[1;32m    569\u001b[0m \u001b[38;5;66;03m# re-apply format to the output\u001b[39;00m\n",
      "File \u001b[0;32m~/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/arrow_dataset.py:3248\u001b[0m, in \u001b[0;36mDataset.map\u001b[0;34m(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)\u001b[0m\n\u001b[1;32m   3242\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSpawning \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_proc\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m processes\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m   3243\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m hf_tqdm(\n\u001b[1;32m   3244\u001b[0m     unit\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m examples\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m   3245\u001b[0m     total\u001b[38;5;241m=\u001b[39mpbar_total,\n\u001b[1;32m   3246\u001b[0m     desc\u001b[38;5;241m=\u001b[39m(desc \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMap\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;241m+\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m (num_proc=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_proc\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m)\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m   3247\u001b[0m ) \u001b[38;5;28;01mas\u001b[39;00m pbar:\n\u001b[0;32m-> 3248\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m rank, done, content \u001b[38;5;129;01min\u001b[39;00m iflatmap_unordered(\n\u001b[1;32m   3249\u001b[0m         pool, Dataset\u001b[38;5;241m.\u001b[39m_map_single, kwargs_iterable\u001b[38;5;241m=\u001b[39mkwargs_per_job\n\u001b[1;32m   3250\u001b[0m     ):\n\u001b[1;32m   3251\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m done:\n\u001b[1;32m   3252\u001b[0m             shards_done \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n",
      "File \u001b[0;32m~/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/utils/py_utils.py:715\u001b[0m, in \u001b[0;36miflatmap_unordered\u001b[0;34m(pool, func, kwargs_iterable)\u001b[0m\n\u001b[1;32m    712\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m    713\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m pool_changed:\n\u001b[1;32m    714\u001b[0m         \u001b[38;5;66;03m# we get the result in case there's an error to raise\u001b[39;00m\n\u001b[0;32m--> 715\u001b[0m         [async_result\u001b[38;5;241m.\u001b[39mget(timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.05\u001b[39m) \u001b[38;5;28;01mfor\u001b[39;00m async_result \u001b[38;5;129;01min\u001b[39;00m async_results]\n",
      "File \u001b[0;32m~/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/datasets/utils/py_utils.py:715\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m    712\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m    713\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m pool_changed:\n\u001b[1;32m    714\u001b[0m         \u001b[38;5;66;03m# we get the result in case there's an error to raise\u001b[39;00m\n\u001b[0;32m--> 715\u001b[0m         [\u001b[43masync_result\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.05\u001b[39;49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m async_result \u001b[38;5;129;01min\u001b[39;00m async_results]\n",
      "File \u001b[0;32m~/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.8/site-packages/multiprocess/pool.py:771\u001b[0m, in \u001b[0;36mApplyResult.get\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m    769\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_value\n\u001b[1;32m    770\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 771\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_value\n",
      "\u001b[0;31mOSError\u001b[0m: [Errno 28] No space left on device"
     ]
    }
   ],
   "source": [
    "converted_dataset = select_dataset.map(crop_and_mask, num_proc=20)\n",
    "print(converted_dataset.column_names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.80ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.79ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.77ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.85ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.83ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.86ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.91ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.93ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.86ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.96ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.82ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.82ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.83ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.98ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.85ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.85ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.84ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.80ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.73ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.77ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.75ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.80ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.76ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.80ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.86ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.85ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.89ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.93ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.88ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.80ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.76ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.69ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.73ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.86ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.84ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.76ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.77ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.84ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.86ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.80ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.77ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.70ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.70ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.69ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.65ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.67ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.73ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.68ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.83ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.70ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.67ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.71ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.72ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.77ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.75ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.76ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.80ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.77ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.77ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.83ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.79ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.75ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.72ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.72ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.72ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.73ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.73ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.76ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.83ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.84ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.75ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.71ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.76ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.74ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.83ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.89ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.79ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.85ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.83ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.81ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.84ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.82ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.79ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.71ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.75ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.72ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.70ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.76ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.74ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.71ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.78ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.75ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.73ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.79ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.69ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.65ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.65ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.71ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.64ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.84ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.73ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.69ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.73ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.62ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.66ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.68ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.60ba/s]\n",
      "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:03<00:00,  1.64ba/s]\n",
      "Uploading the dataset shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 129/129 [11:14<00:00,  5.23s/it]\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "CommitInfo(commit_url='https://huggingface.co/datasets/ppak10/Melt-Pool-Thermal-Images/commit/c5da9d5e99f950c9e241c747cd68fa8d81ddd873', commit_message='Upload dataset (part 00002-of-00003)', commit_description='', oid='c5da9d5e99f950c9e241c747cd68fa8d81ddd873', pr_url=None, pr_revision=None, pr_num=None)"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "converted_dataset.push_to_hub(\n",
    "    \"ppak10/Melt-Pool-Thermal-Images\",\n",
    "    config_name = \"masked\",\n",
    "    split = \"data\"   \n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}