{ "cells": [ { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import torch\n", "\n", "from datasets import load_dataset\n", "from tqdm import tqdm" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Downloading readme: 100%|██████████| 7.97k/7.97k [00:00<00:00, 12.1MB/s]\n", "Downloading data: 100%|██████████| 32.4M/32.4M [00:04<00:00, 7.22MB/s]\n", "Downloading data: 100%|██████████| 52.5M/52.5M [00:05<00:00, 10.4MB/s]\n", "Downloading data: 100%|██████████| 38.4M/38.4M [00:06<00:00, 5.98MB/s]\n", "Downloading data: 100%|██████████| 41.5M/41.5M [00:07<00:00, 5.40MB/s]\n", "Downloading data: 100%|██████████| 53.4M/53.4M [00:07<00:00, 6.88MB/s]\n", "Downloading data: 100%|██████████| 39.5M/39.5M [00:07<00:00, 5.10MB/s]\n", "Downloading data: 100%|██████████| 52.3M/52.3M [00:08<00:00, 6.40MB/s]\n", "Downloading data: 100%|██████████| 45.0M/45.0M [00:08<00:00, 5.34MB/s]\n", "Downloading data: 100%|██████████| 48.5M/48.5M [00:08<00:00, 5.76MB/s]\n", "Downloading data: 100%|██████████| 51.3M/51.3M [00:08<00:00, 5.88MB/s]\n", "Downloading data: 100%|██████████| 57.6M/57.6M [00:09<00:00, 6.39MB/s]\n", "Downloading data: 100%|██████████| 49.1M/49.1M [00:09<00:00, 5.30MB/s]\n", "Downloading data: 100%|██████████| 55.8M/55.8M [00:09<00:00, 6.05MB/s]\n", "Downloading data: 100%|██████████| 57.9M/57.9M [00:09<00:00, 6.07MB/s]\n", "Downloading data: 100%|██████████| 41.7M/41.7M [00:06<00:00, 6.42MB/s]\n", "Downloading data: 100%|██████████| 68.2M/68.2M [00:11<00:00, 5.82MB/s]\n", "Downloading data: 100%|██████████| 72.5M/72.5M [00:12<00:00, 5.90MB/s]\n", "Downloading data: 100%|██████████| 40.4M/40.4M [00:06<00:00, 5.77MB/s]\n", "Downloading data: 100%|██████████| 56.3M/56.3M [00:09<00:00, 6.14MB/s]\n", "Downloading data: 100%|██████████| 43.0M/43.0M [00:06<00:00, 6.69MB/s]\n", "Downloading data: 100%|██████████| 40.4M/40.4M [00:06<00:00, 6.30MB/s]\n", "Downloading data: 100%|██████████| 45.7M/45.7M [00:06<00:00, 6.52MB/s]\n", "Downloading data: 100%|██████████| 109M/109M [00:15<00:00, 7.16MB/s]\n", "Downloading data: 100%|██████████| 48.1M/48.1M [00:06<00:00, 7.41MB/s]\n", "Downloading data: 100%|██████████| 79.6M/79.6M [00:15<00:00, 5.16MB/s]\n", "Downloading data: 100%|██████████| 44.2M/44.2M [00:07<00:00, 5.93MB/s]\n", "Downloading data: 100%|██████████| 49.8M/49.8M [00:07<00:00, 6.77MB/s]\n", "Downloading data: 100%|██████████| 48.1M/48.1M [00:08<00:00, 5.83MB/s]\n", "Downloading data: 100%|██████████| 104M/104M [00:17<00:00, 5.99MB/s]\n", "Downloading data: 100%|██████████| 50.5M/50.5M [00:08<00:00, 6.17MB/s]\n", "Downloading data: 100%|██████████| 55.4M/55.4M [00:08<00:00, 6.43MB/s]\n", "Downloading data: 100%|██████████| 44.9M/44.9M [00:07<00:00, 6.30MB/s]\n", "Downloading data: 100%|██████████| 58.2M/58.2M [00:09<00:00, 6.04MB/s]\n", "Downloading data: 100%|██████████| 56.5M/56.5M [00:09<00:00, 5.78MB/s]\n", "Downloading data: 100%|██████████| 40.3M/40.3M [00:06<00:00, 5.95MB/s]\n", "Downloading data: 100%|██████████| 42.4M/42.4M [00:06<00:00, 6.59MB/s]\n", "Downloading data: 100%|██████████| 44.6M/44.6M [00:07<00:00, 5.76MB/s]\n", "Downloading data: 100%|██████████| 65.5M/65.5M [00:10<00:00, 6.30MB/s]\n", "Downloading data: 100%|██████████| 47.4M/47.4M [00:07<00:00, 6.65MB/s]\n", "Downloading data: 100%|██████████| 51.9M/51.9M [00:07<00:00, 6.81MB/s]\n", "Downloading data: 100%|██████████| 49.8M/49.8M [00:07<00:00, 6.78MB/s]\n", "Downloading data: 100%|██████████| 46.3M/46.3M [00:08<00:00, 5.49MB/s]\n", "Downloading data: 100%|██████████| 40.8M/40.8M [00:06<00:00, 6.05MB/s]\n", "Downloading data: 100%|██████████| 75.3M/75.3M [00:12<00:00, 5.91MB/s]\n", "Downloading data: 100%|██████████| 50.7M/50.7M [00:08<00:00, 6.01MB/s]\n", "Downloading data: 100%|██████████| 60.7M/60.7M [00:10<00:00, 5.67MB/s]\n", "Downloading data: 100%|██████████| 48.6M/48.6M [00:07<00:00, 6.65MB/s]\n", "Downloading data: 100%|██████████| 40.2M/40.2M [00:05<00:00, 6.97MB/s]\n", "Downloading data: 100%|██████████| 53.5M/53.5M [00:08<00:00, 6.19MB/s]\n", "Downloading data: 100%|██████████| 43.5M/43.5M [00:06<00:00, 6.44MB/s]\n", "Downloading data: 100%|██████████| 56.3M/56.3M [00:08<00:00, 6.58MB/s]\n", "Downloading data: 100%|██████████| 56.6M/56.6M [00:10<00:00, 5.29MB/s]\n", "Downloading data: 100%|██████████| 80.5M/80.5M [00:14<00:00, 5.47MB/s]\n", "Downloading data: 100%|██████████| 48.0M/48.0M [00:07<00:00, 6.83MB/s]\n", "Downloading data: 100%|██████████| 46.1M/46.1M [00:08<00:00, 5.60MB/s]\n", "Downloading data: 100%|██████████| 39.1M/39.1M [00:06<00:00, 6.15MB/s]\n", "Downloading data: 100%|██████████| 93.5M/93.5M [00:13<00:00, 6.70MB/s]\n", "Downloading data: 100%|██████████| 55.5M/55.5M [00:09<00:00, 6.04MB/s]\n", "Downloading data: 100%|██████████| 40.6M/40.6M [00:05<00:00, 6.95MB/s]\n", "Downloading data: 100%|██████████| 51.2M/51.2M [00:08<00:00, 6.25MB/s]\n", "Downloading data: 100%|██████████| 49.3M/49.3M [00:07<00:00, 6.65MB/s]\n", "Downloading data: 100%|██████████| 47.9M/47.9M [00:08<00:00, 5.59MB/s]\n", "Downloading data: 100%|██████████| 50.3M/50.3M [00:07<00:00, 7.09MB/s]\n", "Downloading data: 100%|██████████| 65.3M/65.3M [00:10<00:00, 5.96MB/s]\n", "Downloading data: 100%|██████████| 62.1M/62.1M [00:09<00:00, 6.50MB/s]\n", "Downloading data: 100%|██████████| 42.0M/42.0M [00:06<00:00, 6.13MB/s]\n", "Downloading data: 100%|██████████| 124M/124M [00:19<00:00, 6.21MB/s]\n", "Downloading data: 100%|██████████| 58.7M/58.7M [00:08<00:00, 6.58MB/s]\n", "Downloading data: 100%|██████████| 37.9M/37.9M [00:05<00:00, 6.53MB/s]\n", "Downloading data: 100%|██████████| 75.3M/75.3M [00:12<00:00, 6.11MB/s]\n", "Downloading data: 100%|██████████| 54.3M/54.3M [00:08<00:00, 6.55MB/s]\n", "Downloading data: 100%|██████████| 57.2M/57.2M [00:09<00:00, 6.22MB/s]\n", "Downloading data: 100%|██████████| 43.3M/43.3M [00:07<00:00, 5.78MB/s]\n", "Downloading data: 100%|██████████| 48.6M/48.6M [00:07<00:00, 6.12MB/s]\n", "Downloading data: 100%|██████████| 41.6M/41.6M [00:06<00:00, 6.07MB/s]\n", "Downloading data: 100%|██████████| 55.5M/55.5M [00:07<00:00, 7.29MB/s]\n", "Downloading data: 100%|██████████| 47.4M/47.4M [00:06<00:00, 6.95MB/s]\n", "Downloading data: 100%|██████████| 49.7M/49.7M [00:07<00:00, 6.49MB/s]\n", "Downloading data: 100%|██████████| 49.2M/49.2M [00:07<00:00, 6.69MB/s]\n", "Downloading data: 100%|██████████| 49.6M/49.6M [00:08<00:00, 6.02MB/s]\n", "Downloading data: 100%|██████████| 40.1M/40.1M [00:07<00:00, 5.72MB/s]\n", "Downloading data: 100%|██████████| 81.7M/81.7M [00:12<00:00, 6.70MB/s]\n", "Downloading data: 100%|██████████| 63.2M/63.2M [00:09<00:00, 6.84MB/s]\n", "Downloading data: 100%|██████████| 57.8M/57.8M [00:06<00:00, 8.29MB/s]\n", "Downloading data: 100%|██████████| 38.1M/38.1M [00:06<00:00, 5.59MB/s]\n", "Downloading data: 100%|██████████| 43.0M/43.0M [00:05<00:00, 7.52MB/s]\n", "Downloading data: 100%|██████████| 66.7M/66.7M [00:10<00:00, 6.24MB/s]\n", "Downloading data: 100%|██████████| 49.3M/49.3M [00:07<00:00, 6.43MB/s]\n", "Downloading data: 100%|██████████| 54.9M/54.9M [00:08<00:00, 6.75MB/s]\n", "Downloading data: 100%|██████████| 57.7M/57.7M [00:08<00:00, 7.02MB/s]\n", "Downloading data: 100%|██████████| 46.8M/46.8M [00:07<00:00, 5.90MB/s]\n", "Downloading data: 100%|██████████| 50.8M/50.8M [00:07<00:00, 7.17MB/s]\n", "Downloading data: 100%|██████████| 51.2M/51.2M [00:07<00:00, 6.46MB/s]\n", "Downloading data: 100%|██████████| 115M/115M [00:17<00:00, 6.72MB/s]\n", "Downloading data: 100%|██████████| 54.9M/54.9M [00:09<00:00, 5.99MB/s]\n", "Downloading data: 100%|██████████| 49.8M/49.8M [00:07<00:00, 6.33MB/s]\n", "Downloading data: 100%|██████████| 50.6M/50.6M [00:08<00:00, 5.96MB/s]\n", "Downloading data: 100%|██████████| 80.0M/80.0M [00:11<00:00, 6.79MB/s]\n", "Downloading data: 100%|██████████| 42.4M/42.4M [00:07<00:00, 5.94MB/s]\n", "Downloading data: 100%|██████████| 39.0M/39.0M [00:04<00:00, 8.19MB/s]\n", "Downloading data: 100%|██████████| 54.6M/54.6M [00:07<00:00, 6.94MB/s]\n", "Downloading data: 100%|██████████| 57.6M/57.6M [00:08<00:00, 7.05MB/s]\n", "Downloading data: 100%|██████████| 50.3M/50.3M [00:05<00:00, 8.49MB/s]\n", "Downloading data: 100%|██████████| 110M/110M [00:18<00:00, 5.99MB/s]\n", "Downloading data: 100%|██████████| 72.5M/72.5M [00:08<00:00, 8.85MB/s]\n", "Downloading data: 100%|██████████| 47.0M/47.0M [00:08<00:00, 5.87MB/s]\n", "Downloading data: 100%|██████████| 90.1M/90.1M [00:11<00:00, 7.61MB/s]\n", "Downloading data: 100%|██████████| 58.8M/58.8M [00:08<00:00, 7.03MB/s]\n", "Downloading data: 100%|██████████| 62.7M/62.7M [00:06<00:00, 10.4MB/s]\n", "Downloading data: 100%|██████████| 51.9M/51.9M [00:06<00:00, 8.51MB/s]\n", "Downloading data: 100%|██████████| 54.0M/54.0M [00:07<00:00, 7.21MB/s]\n", "Downloading data: 100%|██████████| 50.5M/50.5M [00:06<00:00, 8.20MB/s]\n", "Downloading data: 100%|██████████| 58.2M/58.2M [00:09<00:00, 5.91MB/s]\n", "Downloading data: 100%|██████████| 57.9M/57.9M [00:04<00:00, 12.2MB/s]\n", "Downloading data: 100%|██████████| 60.7M/60.7M [00:05<00:00, 12.0MB/s]\n", "Downloading data: 100%|██████████| 81.5M/81.5M [00:07<00:00, 10.2MB/s]\n", "Downloading data: 100%|██████████| 55.2M/55.2M [00:03<00:00, 15.0MB/s]\n", "Downloading data: 100%|██████████| 118M/118M [00:09<00:00, 12.0MB/s]\n", "Downloading data: 100%|██████████| 92.6M/92.6M [00:04<00:00, 19.5MB/s]\n", "Downloading data: 100%|██████████| 53.8M/53.8M [00:03<00:00, 16.2MB/s]\n", "Downloading data: 100%|██████████| 71.4M/71.4M [00:05<00:00, 13.9MB/s]\n", "Downloading data: 100%|██████████| 58.5M/58.5M [00:02<00:00, 19.8MB/s]\n", "Downloading data: 100%|██████████| 75.6M/75.6M [00:03<00:00, 23.3MB/s]\n", "Downloading data: 100%|██████████| 110M/110M [00:03<00:00, 32.7MB/s]\n", "Downloading data: 100%|██████████| 69.2M/69.2M [00:02<00:00, 28.0MB/s]\n", "Downloading data: 100%|██████████| 102M/102M [00:04<00:00, 25.4MB/s]\n", "Downloading data: 100%|██████████| 107M/107M [00:02<00:00, 38.2MB/s]\n", "Downloading data: 100%|██████████| 92.0M/92.0M [00:01<00:00, 53.3MB/s]\n", "Downloading data: 100%|██████████| 111M/111M [00:01<00:00, 59.9MB/s]\n", "Generating data split: 100%|██████████| 706074/706074 [01:59<00:00, 5903.84 examples/s] \n" ] } ], "source": [ "dataset = load_dataset(\n", " \"ppak10/Melt-Pool-Thermal-Images\",\n", " \"masked\",\n", " split = \"data\",\n", " num_proc=20\n", ")\n", "# dataset = load_dataset(\n", "# \"ppak10/NIST-In-Situ-IN625-LPBF-Overhangs\",\n", "# \"frames\",\n", "# split = \"data\",\n", "# )" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "torch_dataset = dataset.with_format(\"torch\")\n", "loader = torch.utils.data.DataLoader(torch_dataset, num_workers = 8, shuffle = True)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "0it [00:00, ?it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "{'frame_index': tensor([958]), 'layer_number': tensor([376]), 'radiant_temp': tensor([[[0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " ...,\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0],\n", " [0, 0, 0, ..., 0, 0, 0]]]), 'scan_speed': tensor([800]), 'laser_power': tensor([195])}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAADeCAYAAAAXWfuoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACidElEQVR4nOy9d5wcWXnu/z2nqrp7ctKMNCONctioDVqtAgssORsMOOAENiZcA/ZlcWD9w8Byr73OxlyMse/FOJAM9gImGGwwYNics3JOo1GYPN1dVef9/XEq9sxotYu0knbr+XxG6q5w6tSp6jpPveF5lYgIBQoUKFCgQIEC5xH0ue5AgQIFChQoUKBAIwqCUqBAgQIFChQ471AQlAIFChQoUKDAeYeCoBQoUKBAgQIFzjsUBKVAgQIFChQocN6hICgFChQoUKBAgfMOBUEpUKBAgQIFCpx3KAhKgQIFChQoUOC8Q0FQChQoUKBAgQLnHQqCUqBAgQIFChQ473BOCcpf/dVfsXTpUiqVChs2bOCuu+46l90pUKBAgQIFCpwnOGcE5Z//+Z+54YYb+NCHPsR9993HFVdcwcte9jKOHj16rrpUoECBAgUKFDhPoM5VscANGzawfv16Pv7xjwNgjGFwcJD3vOc9vP/97z8XXSpQoECBAgUKnCdwz8VB6/U69957LzfeeGOyTGvNi1/8Ym6//fYZ29dqNWq1WvLdGMOJEyfo6elBKfW09LlAgQIFChQo8ONBRBgfH2dgYACtT+3EOScE5dixY4RhyPz583PL58+fz5YtW2Zsf/PNN3PTTTc9Xd0rUKBAgQIFCpxF7N+/n0WLFp1ym3NCUJ4sbrzxRm644Ybk++joKIsXL+Y6XomLdw57VuBsw2xey57XlDFlA47YqCkl4Gu6H3Do/dFRwp17znU3C5wrKIWzbDFojarXCfYdPNc9ekK4yxYzdP0CTl4RgmcgNgIrQSn7PwCiQAte2aelqU5P0xRKCbXQZbJe5vhwG2rSoXm/Q//H7jxXp/OkMPqz13LiJdMs6TvBguYx2pw6FaeOEUUgDjXjMBWWOV5t5thUC2PjTYRjJZSJBkmAUFE6qWnfK3R8/vQSK3SljFq2mJ1v6iLoDFBVzap/HEP5IWpiiuDg4bN30gVyCPD5Ed+kra3tCbc9JwRl3rx5OI7D0NBQbvnQ0BALFiyYsX25XKZcLs9Y7uLhqoKgPJNhShV0cxnlCuIIaIGSQWlh5PmaiUsXs/z9h+DchFIVOMdQ5TK73rGEsCQ0H9YM/Ml5HmSvFHveuhS/y6Dd6J5VYkmKTgm4UvaW1q7BKTvoisYva7QSxGiU4+K2exjl4VTcC+Y56JQrOM0CTU1IU4DveIhqomYcjGgC0fihQyAtSNiEDipI3UMFypIUAaVgyW019A/vh9M8b2fJMh7/nU5aOqp4TogRxa73d2LGPTofc+n7+LGzfOYFEsS3/WmEZ5wTglIqlVi3bh3f/e53ed3rXgfYuJLvfve7vPvd7z4XXSpwnsK983Eu2tphvyiFv3wBO95URppDlCMEPT57P7yJ5f90mHDH7nPb2QJPG46/bRPjiyFsEsKeOgATrZpdf7wJd1Ix/26f8jfvPse9nB3KKFRgJ1tLuhUgYBQYQFvjCYAJNL5ymTCKmu+itWCMwvcdTNVl8D+g9YdbCM/lCT0JKCOEgWaiVsbVhrIT4CoDgEERGM104DFeK1GruxhfowLFyi9U8XYdAWwMg4yOYU7zmFOv38DQek2ldYLulikcbQiNplrzqDsuUqiBnbc4Zy6eG264gTe/+c1cc801XHvttXz0ox9lcnKSX/7lXz5XXSpwHsJUq5gj1eS7G4T0/2A5h5/rIC0hOEKtN4By6Rz2ssDTBd3czNSLLmNsOfjzAnQlwHEERCGeISwZgimHepvDTJvreQARFtzpc+Jij4nFxlpKlAAqebMEUrdPqDChwjiaMHBQWhCjkECDryiNBoTHT5yDE3lqUCFIXTNV83C0oea4eE6IVoIRZYlD4FKtewS+i/gaJQr35BTBkaEnPsAsqLdognaDA4SiwGh8oxGjLBMsjK/nLc4ZQfmZn/kZhoeH+eAHP8iRI0e48sor+da3vjUjcLZAAQCnp9t+qNVo/dKdeFduol42UBJwBSmyuZ7x0JUKauEC9r9YI20+TjnEca3tQAQQRQhISWHc8/e1uPzNu2lv2sDkIoVoa1GROO4kMqYAiUVF1xxUoAg7gnR9qNB1jTIX1uzqTRmckx61phCloOQGuI7B0QaJCEotcKjVPMKag6prvDEFwVO3Ebk1wZnUhIFmqlZCa0MQOoSBxpnQuFMX1hg+m3BOg2Tf/e53Fy6dAk8IXamw/bfWIK7QckCz4KO3oWsK5WtrntXFA+bZgMmXr+XACzR01vHK1nKilP0zRhOGNj4BDaLPb8KqBJQBgoikRP0mij1RoiBQ6AD6fyS03baLrb+zPBNQa60Rp+3nOE/Q9NW7WHPPAI/93iKmfE3VM2gnxHEEETBGEUbuK1XXlI5rlnz4LkLz1AlK6xfvoOP+5Tz+vnmM1lz7vBCQaZc1/zyJ3P3wGTzDAmcSF0QWT4ECgH04Rw/oZV8YYuj6Pk6sM5EPv8AzGcfevonxZSCtPl45wHUNOkNMczHShnNuWRj5pU1M9SkkesJqH1oOGdo/fwcAbbfupmlogF2vr7Dk3wNqnS5HNgEK+m+F9q2j9jxE4NhJzPETrPlUV85SqETg0NELJv4kRnj0GBf9dQe739BJrS8kdFx8x5IGjIJQoeqK7gc1fT8a/rHISQzZf4iL/rrMrp/uxO8w6Kpi5WfH0Tv3X3Dj92xCQVAKnPeQ0NCxHcRRNB+LTPpNJcTB+pDD6GFd4BkH3daGuXQZYysh6PbR5TAhJ7H1JAwjd44oS1SMSjJ1n/b+ViqYK1dz8iLw5/mokjVxSF3jt3m0X3s56v6thENHcWs1Oi69hKaHD1Dp7qDaZd2YHY8cJ3x8+4y2w0e3Pq3ncrYgfh158HF61mxkqtdFHKwlVCLLUggqFLofmyLcuuOMHNNUq/Dg43RfspFah8atgjzwGGHx3DivURCUAuc9xK/T86m8wvCe13VR6wkjH70Gc4HZugs8MbQDSxay/edsSqquhJTKAY5jLDnBvnSLpFYFid7AEVCum1ku0PAmrlwXCYIz2+V5PWz9xSZoq+F5Ia5njxn4DrWlhh1vamHNzlbC4ycIR0aZ97e3EwAcPsK8R20bz5Y3+tYv3kHr03zM2IJV4MJAQVAKXJhQoEKFN6pZ/sePEE5OneseFTjDGPmFazm+VpBKiNPi43khnhdYyZAo6yMmJya0QZBStQGlw+vg+Nr1yVt5+w7o/nRKct0lg+x4+yJWfnw3weEjZ67TSiElk/QvCHQivqZcg2kyUcBJgQIFnggFQSlwQWLRd6YIKw5OzWDGx891dwo8Rah1lzK6xipKdv3nTuhs4+T6PkTD2HJF2BKiSgatrdVEROHoyG2CtZ4YozBGYwKdWE+MB+JKEkQ6Mahxfn5jkgUTNCvCijD0ymW41aW2LzZbmZYjPu5/3cfkG66l/bGTcHiYk69YQ9e3t8H8eYxe2kXrv9wFIriLFnLiuYN0fvkB5PJVDF3RCibABBolkgvWlbAgJgUKPBkUBKXABQn9owc4fxNJC5wuJpe0MrzOfm7dt5B6V4nhddi4BM/q3CgnIiQxGVEqISci1npiAgWBTiXRAdGCivRF6l2G4WsyBxar3jpyiSSiaDFBmd5fZtHuJQxfpUG6aG0pM7wOum9tYXqgjeGrNJ33LgFj8Ae6mBjUdHoetZ4KUwuUDfQMNCJW+Vgi9VOJhdgKFHgKcJfakg4x6VVhdDP5AcGB87/Ew1NBQVAKFChwziCKRMlz509VbHBrpLAqjoBjrSYmdBAjaMdaS3Skm2GMsq4d31pPRAkqVmbFkhSiNpFTWDBivS6BicWGLe9ZgDLCkU0KNrXkSIwpCVt/zZbkaNujGfjj2zBA6Vt3s+zhAR7/7cWIGNsfLUnqMMZqlxRlGQo8WahymS2/MYCJxCkRwNcoX1E66bDkw8/Mch8FQSlQoMDTCmflMva9sR9RELRG7EExe+aNUUhEPNDKWktC0I5CYtdO3UkDYxMmQSp+RrTcSC5VHQNCnrQoSAiNKGikNKW7trFmW0fyXaq1GUGtKgTQVm8jjjcRaD7osOTz+wlOjp7+YBV41kOtv5zdr23FdPipmS92F+rIlfkMRUFQChR4FsFdMJ/ptYMAND1+hGD/gae/EyWP6jxj08QzkJikxKwgY/kQY60iohRKQRjqVPI9VLNbRzKLJCnIF6+zD3oVZo9jCUtCUrJ9AkbXD1Aa6UvarDy8n3B4OPnurFnJ2CU9KIGuRxR+q2ZiiUnOxalCsHc/5vlXUdp/kmDXnic5cAWeEdi4lnpHCXFU7l5XBirff9imRGe2Hb6ihfoC35Y5CFWqFRM+82X6C4JSoMCzCGH/PA4+31aAXTzdi34aCYqOyqub5lLekpF5yOZ4RizcZaJSBhFbsNvYB7X4Ot0/spooGqTjSdfjmqRiMGD3N9HD3tiDCpYEZUkKCg4/R4HYsVMCy6cHcKamk+ZPrpuXxNPM/84hakt6mFxYwqkqTMm24bS3s/dFFXofmE/r0DBmcvIpjmaBCw5KoVtb2f/8VqYWhkgpqs6usKJ8vubibQuQg4eRWg2AQ89tZWJ5YKu5h1ZdGKNQvoqKToIz/cwNvi4ISoECzyLI/Y+y9MHIdCFPX8Smbm5m542XIa6NC4mtJ6KzLIBIqYvI5aNsoGlg4zYkdpkosVYTE/1BYgFRUfG3hKTEFhll41l0ObRtR8vENZgohkX5OiUpsQigjmJh3GgyEUtkVF2z6ycrqNdelpyHRFL1yhD1E7SvWP4HD3L0F69gZI1h2+9dijjC4c2K8kVXsOgPbntaxr/AuYfT18v2G1YQdASoSohXDqg01S0/EUWt6vHYb/cx8F8LaP1ipNcS/RYkVFDTyf2NBgz03Q1tX7rzGRl/AgVBKVDg2YczIB1+upj46Y1UuxTGUZhS5NZRGWKStaLEb5NZNLp8YO5gV5VunyMnmfViVEpYIhKhIhIigaCUSicFNwTX6pdoz0SuJtuGKAgdhQrsm6w4MdGyGUj7f3KAsATGMxx5y5VML4gsNk4cvAv1dmH4nZvo/+oZ1GLZuJaj17RiPNsXFYJTE3r/4b7krbzAuYHSmqA9xGnzqTTV6Wiepq1UIxTNtO8xihX0G76qTL11E91/Z3V7VKgQNCrI3Mwxn59FgPCZhIKgFCjwLILT2YEs6sc8tv2sPthUuYxas4yTqzX1LgOkFobYZZLfQWaSicZlMRozcnIuIpm5LenxxFj3TWKwaSg0GWfdoAVVCdGe1WDRWjBGIcoWqAyNAbRtJ0yJR4yJZWHiohpbaagMayrH7EEnBi0hMiVhbBUsaG2e5SSfGqbnVxi9KEQiQoUBZ0rT57oFQTmHcBfMp766H8qGcsWSk56mKZrdOtXAug2nfZeaF+LP9znpesy78hLCEtZih8qn0CtoPqBpGq7OccRnBgqCUqDAswjh6sXs/KlWVn2k+ewI3EVZK07vPLa+uRNxTBrLkRWuycR4JN9jxJaPOFbEyRCVmJwkxEPmtKjEGT0Sp+TE8apxDIvEachpBlCc2qzKIaWKH8nq2yq7AAaDGI12jd0ttFlGjdYfSQIZ7QEX/mASdftDANQ+tAm/TTJ9OYNQEVnSRGZ/lR/3AucEY5uXcvD5CqdSpb25Ske5SrtXxYhCK4OnQypeQK0cYEQR9sDWt7WhfJNYTpTl+Ta4WwmLP7OT4MjQOT2vs42CoBQo8CyDeMLu37qMxd+eRt36wJlrWCkOvH8TQatgHDDlTIxLnCkD6UTeGMCaDXaNiAKOWBeMmYXBNLaXbUfSTRXK1uKZzRxjVJrBowVcg/JMUkMnFoOzhQlVVKTQ2KDFKLvIxEQoVEiokdgUryVyNWl2v7aZ9ss3Mu9vbmfZRx9l5OUXc3T97F36caAC0FWNeNbF1b7dYeCfHicsgnHPKYyrkLLBdUOcyMpXDV3qxqUWuNRCl3rgIoLV+CmFtryYOHQ85tD/+cdntBmMjDy9J3EOUBCUAgWeRXAPHmfRd5tQRvAOnuDMlsqzuiZ+mwEn46LJBK/OSItU+e0S6DjDIY5VaRAmmSsm0MSb511AOZKSdQPF2+VIjdVXARCRpHKy64YoJckEE4oiDDVhqG0toDiAl5SgWJE2IWgLmVjs0PTGDbR982E6HzxOabzTZiedGHmiYT1ttGw7ziJ6ECdKWx0aJzx58oy1X+CpIXEpKnvf1ELXBsaGLtXApR441HwP33fsvZcEd4MO5Fl7DQuCUqDAswjBwUNUDh6yn89C+xK5ZqywWrQwmqSt1kPe8tG4XQLHEpRcXb3Z3DlZdw8ziUn2sxJl3T0qQ3RMhjypyGJisNL5rkZjEGVJSskN8ByDq40V8gwdfOXgK/BF2do7RqXuFR1ZfxQQKOrdIYefo2l/eADZd4jy1l24ffMIR8ee/EDPgXDbTirbdp6x9gqceYRGUw1cqlirST1wCEKNX3etKrJRCRmfMw7rWYKCoBQoUODMIhdbksnWEZVKz8fbZR++sdVER8GrWSVYVJpJGWfhkCcjaraAjgbLjMrEoszoKyQKnaKiFGcluK6hvalKq1dPChXWQhdHCY42KF+SGBWtBLw0+FhERSK3GhSYimHrO+ax6L+6abl7D1vft5zVf9tCuH3XzL4XeOZAYUk3UPVdqr5LGGp830GMjso5ZHR9YoVANZOTP5tQEJQCBQr82HBWLWf/6xYQNkdCaNkAVw3as7oPcdxGUHORmk6fvlpSq0nkGlGxmNqpgmIzrh+JNpphRcl+jR76ajbXDljyorBiWNqSk5Ib4GmDQWGMFXAxmWM4Wih7AaFrXT7GaMJQJRPPjGDgbBZTdI7qqks5+OIOEFj0nycxD9qYg2Pv2ES9wwa6igIdQuf2kOYv3znjGhx/2yY6dtVxv3vvnNepwLmBRKTaGEWt5iHG3itIdH9DGg8V6/toa3GctQTEswQFQSlQoMATwlm1HH9BBwDufdvQnR34i3tRdzwEIkhzmakBg7iS0zhRruCUQipNdea1TqKVUAtcxqplJkaabUCpUXOSkwSxQqyZY8LPYo7soKw7KXE5qfzOSmJLja3SE/fDNzrKuEgbj0mKDaCVKLsiOVhUcZmZKdEN/R2/rJd6m2aq31pnTl7eQZe6BPPAY0wtUNS7jNVpcQVV15RPaGZLTJ7qU1ROuMVD/SzC6enGv2xJUlHYmQ7gjodOe/84qFpChQl0zoUpMTExDYSlICgFChQoMDtUuczxjfM5drWd1Nccmc/Uih4OPddl+SOt4PtIyU0rECsSd40uhbS2VOlvH2N1+1HKOqBmXA5MdfJIvZ961bMqrknMSWRRyBT9VUiSTZN2irz7yMQfLBFRDZX+El9+NiBXUrXZGa6feD9RNmbAd9EKHG3sn5IZ84YkQbPRJGSiP4n6N0eQ8KHnqly/jl0F072dLHjAZuVgAI/ETRBPjmkbCl0uo0PQ4YUzmymvBGKQ4GxEQ515KK+EWb6Qna8vI55BiaJ0vMyyByqYWo0nVHON7g8JVZKGLrGlMb7/Gt2fF87lPCsoCEqBAgXmhnbYe+M66u0mqZq69V191ijgGLZ95NL0YdogeoYjeF5I2QuoOD6eCulwpvG8gC53iuPVFobHW5meLCGRtkMsQy+Nk7lknPFacEoGxw2jzBoIAk3gu4TTDviaHH2IrSyxGylpM50YZJYYFsHqn1jLCTR5Po42aCXWehJZVYJQU617BIF178TEBCGZiGJpftVoAWo8YMO6xX98DxOvvYpDz7Wmfqtcm9/GXbaE7W/rZ9Un9hEcPDxH4+cfDv/aNVROCJ3/dPu57spp4eivrmPkYoNUbLkECaHeY9jxkatY/deHCHbvnXNfZYBAYXydkpFQYUthx+7GrOsSVGhr7ugLg7+dFRQEpUCBAqeEcSWRqEeBcUzyWVzJWx4y1pOYaPihZtIvc6Legi8OngoxonC1VWlVjtgHdfycbpikJQoYVK51AZUrPi2VOmU3wHNCRBS10KFa95jUZfyJUlThOO6z5AoEJtCkx5VIB0Xb/ivX4HkhlZJP2Qto8nzcKEA2du0YUYgoAqMJAk0YOFa0jQZzfdQXZVIrzbHLXMYXriBhJFFflcC8+6Dr4RP2hdqv03HPYbyJ+ex7mcPAD4W2x4+T1QA2w8dZ+vVOzPCx8172XDZdwYlLrYNqeoFQOgtagWcLxlX2fo+JpLF/xo0yw04BHQrKV4iXsexFsU7ADGKqjCUvAz8S2h49xvl9Vc8ezrjG4M0338z69etpa2ujr6+P173udWzdujW3zfXXX49SKvf3zne+80x3pUCBAgDawVm1HGf1Cvu3avkTPlDnQuoqIZ3wNfnA2Mx6YxR+6DDplxj1KxyrtXKs3spwvZXA6HRT3dClrAFECcoRHNdQKgd0tEzT2zJBX/M4vU0TdFcm6ShXaavUbPE1z6Tqs43kRBr+IG9dcQ2qZHBLlpxUSj5Nnk9Jh+hoh5iYhKLwo6BYEzoZoTZtCxwGseWEtFpy5Hqq9hlG10Ty/8nY2e60757GPLQlOf9gzz6a7tmFMtD2+AnCx7fnrokZH0fd+gCmen7LnrvLl3LyomZOXiacvEwImi8s/4VKSKb9K510aNnv0HJQQ61+yn3LJwKaDjv2vogLXWbdOZnP3ohD837bdvt9hwm37jibp3Ve44xbUH7wgx/wrne9i/Xr1xMEAb/7u7/LS1/6Uh577DFaWlqS7d72trfxkY98JPne3Hzm6lEUKFAghdPRzra3z7fqooCuK1beNIQ5DXVRpeO3fxs2qmBG3Zn8DuRJiiiCwGGyVuKoasNz7LugEcVYtYwfRGWNs9k5MZeIg1C14JUCmit1upqn6W8eo8nx0cpgRBOIToJX66HDdCkkEMDolJxIhiDQ0EewVhPPEpNSOaC5XKelVLdWHgSDJVpGrMsnMJqa71otFN/BBCoiJio51qzidEps+G3kDovdZnZVtO9s5DGqAfRUieU5h1Ls+qUBK+JnSLPELyCOogJB15QV11PQf2tA+Zt3A0+sKeT+170sfWw+W96/LA0kbzj/2GrSd4+h5V/vPK12n+k44wTlW9/6Vu773//939PX18e9997L8573vGR5c3MzCxYsONOHL1CgQCO0QjybBYKC0BV2//YVLP6PqVNK3TuXrmHva3tY+akDHH3BQk6sjVw9Sbvk/TGxJUJZUqGUDW4NAg24hKJwooyX0GiCUGOMSrbLIktOXC+krblGe6VKV3mKFrdGpzdNRftohImwnFg3JurlfAbQLFkzqc5E1N+oYrFbCiiVQhxtEFFUAxfdqBxrNKHR1AKHIHBS105MToyy1pIwSg8V0kBIZcdMHGOPGREipW1hP2M04bTD7tc20Xb5Jno/mY/NEA07f76H7kc30v65O051xc8/iLDsr7Zz4qUrGF4feTYc4eSlMHXjZgb/9B7EP7UV4lxjwRceo79SSb6bsfHZ4qrnRHD0GBf9of08uW4xB5/nsvoTBzj06kH8NljyD7tABDM+8aTafSbjrMegjI6OAtDd3Z1b/tnPfpbPfOYzLFiwgNe85jX83u/9XmFFKVDgLEF05q1NQb07ZPiKZnq8q3G+f9+s+5iSS61LGF3XT3WeStOHk0bJT/65TBlJ14nCRLoPictdsBkNs6hQJdohkTFBa0mCU7USmhyfZl23BEVZfZJpp8RkWEI3kh0h4+dvWA5Jf1UmZsaIoh44GLEaJybK2onJSRDJ28eaJxKb7TMWk5icxJ8lDjBRWHJSCnE8g1cKEoJmjEEMBJ2KWpeXdNVZs5LRK+aBI/jtQr31wqz+Fw4P41aXR4IukbusLNS7BBozk85DhCOjwOhTb8CESXG/lscq9LvzCfYfove+bsIml+DwkTPT0WcQzipBMcbwP//n/+Q5z3kOl112WbL8537u51iyZAkDAwM89NBD/M7v/A5bt27llltumbWdWq1GLVMqfGzszElDFyjwTIauVFAd7WmcA1g3gwujawx+W4WF3z9VA8Lh6xSiTZ50QJ6gZMiJ0umEH8MqreqEBMQk4lSZmSoiOlmLiBGFp0Iq2qesfQA8FaKVwVWWxAjks36ydvTG2JMGWNIkmOiYWoXR/2k/4ho8JtSYwKaNYjJundxJ5MdJlLWc6KggoY4m6lhLxbgGKRlM2WpuhCdOMr20k2OXqzSO5vyfy58YWa6oBWdeD1Ktgh8QPgue78HuvTRFWT/q9geLbJU5cFbH5V3vehePPPIIP/rRj3LL3/72tyefL7/8cvr7+3nRi17Ezp07WbFixYx2br75Zm666aaz2dUCBZ6RmH7R5ex/kZMSjOTlWyJNjVPsrEldOrHsdmyFafw/1i9xUnKilFj3BXHqsIrIScNxIt0SibrVGJcQa5GAJQo14zIaNFHWHp4KmQpLTIclpgKPauBGGTTpadqOp+2qhBxFGUjGCmcFOGgtiGOrzpbckPZKlRavTqtboxq6jPsVRqsVqtMlWzfF1+Br69bJ8qA4WSObSRS5eOKYmMB3CAOdfJd4DJRQXeiz9f9bzZqbd1L69j2seKCPrTcut5zrAorbaIRorLuxZJLzCD3F4+8fRIWKln2a/j+/7dx2ssB5g7NGUN797nfz9a9/nf/+7/9m0aJFp9x2w4YNAOzYsWNWgnLjjTdyww03JN/HxsYYHBw8sx0uUOAZhpNv2cT4YmVjHuIskUQQTJ32m7jEwaRxGw2kBKLYzWzsR0ROYivKE2lYJXEo2cDV6ODGWK2RKd/DURW0EqbdEp4OcVXIdFjieK2Zk7VmJmsl63LJqnA2EJN89oQNTBSsMpx4ltm4jqG3ZYJ5lQl6SxO0ujUmgjIn/BY83cZktURQd9J05iw0KUGaJf5FQo3B2Mwlh8TaI4akFAASBdDGrg9zYbESVS4z9NZ1mFhgDktOqvMEcUN7DyVlAATxAI3d/ilAnnMlRzY0W7dgCO17Zy8HUODCwhknKCLCe97zHr785S/z/e9/n2XLlj3hPg888AAA/f39s64vl8uUy+Uz2c0CBZ6x0C0tyCXLGVum8NtNKqCm8n+nXSk1KVqWiS3JWGOSwn5xcKyWWZttTEDJkpZs3Eg2aDa2uARGUw9cpqI4lMDoJMOmbhzG/QqT9RK1mpvK59PgcmmY462svSTbigKJiIXrhDS7ddrdGq1ujQ5nGo0QopkMSriOsZWK46ZVnOMUfdYgUR0VyZIuwSqIxiwmsogkcTeiUnKloHbpIBXPQ2r1ZFm9XaGuuQy57/HzUvfEmd+Hv2qA8eUGcbNWtygDLL4fEwKZXqOwAmr95fDA1icMmo3vc+Nqjl3exPjKwN6DgSIsO7REY+QuWUQ4rz05jDs0QrB3/1k59wJnFmecoLzrXe/ic5/7HF/96ldpa2vjyBEb+NPR0UFTUxM7d+7kc5/7HK985Svp6enhoYce4r3vfS/Pe97zWLt27ZnuToECzzro+b1se2MrduZjbhKi7Futct2ZcuPaQRydTK6piBk5IbaEmGQJCnFMReZQKl2WBoWqmbVqZoEYTRA4VEkNCbXQTVKLA6MZq5aZqpYJql5Skdju3HD+DS4SZSK5eyJLimP75GQCgkPRhNjYl7K2qrhlL2AyHotYnC0bRKztwaVBiEsZhYTxooypJZbyTzQyLEnZ+yqPgfaFtN66Owm4nVpk2PnGNlY+4mGq5xlB0Q61ywbZ82oPKUlKguP7J0n5TolYcg1CqHcZdvxsC6v3dBAOD5/yUKq/j+0/22ILVLoBuHYsxddMLhF2/Ewbq3e0cuy5Axy7yrozlUDfXS10HLLBqohBjJyXRO+8hVIox/p+z3aZgjNOUP76r/8asGJsWXz605/mLW95C6VSie985zt89KMfZXJyksHBQd7whjfwgQ984Ex3pUCBZyWC3XtZ+RH7cB9/+WUcen60IuvyiOp+VHsNu29az8qP785lERx/67WMrgSUyRMTR1KLCZH1BJKMm5icZBETE9cNE/VYgJofycOHKq9qH03OscvHAGGgk0wgP3SS1F+AeuBQr3mEvkbqqXsnqa8Tk5JM9kgyHiYq8BdZT0RpQu0wXfc4Xm0hMA5jpTKtbguhKKZDjwnf6rdIFL8yI+hWi+VcURq2ClLCgRJUmMbbSDYISLBCXtGkrUyWWUWbZGJlz0cc+fUNTPXb+0PVFbiRq8qxSsAWYq1c8TcnsmI5RCUHTvNgWmNKApEwn9KSuMeUWNXX7TdeQthskLJBlUO0Zxh+lWLoZZchdQdV1XRscej7qyLu5XQx+fprObrevrys/uSpJf5/XJwVF8+pMDg4yA9+8IMzfdgCBQrEEMFMTjL9umsZXe7Ymdc0mBJERQX1hLACQ69cxryHelEPb+fkG69kYhDCithJIyYkcbXhTFG/2GoSfcwsP/VzIC68Z7TCmNgPkkFCKqyrJESjxE5AxqhcbEvguxhfp66dmJwk58rsnxO3S7SPIqkyW6t6jLllq4cSuky4dYxoqqHLlF+iWvcwUayLkkwKdqxIG8dYRLGgKpJFz/UjJiCzxKlkY2dOrnKZ7lo5s9bRXGPb3MzI69bagFStMA5JMLRVQ4V5X91CePLkabX3ZBCWoemoovvxgAMvcnLurRnFHt3MvRJoS06iPg+/eiU9D/Qh9z8663HMdVcyfFkT4sTmKBvonHMZKVJyUgkpN/k0leuJdWy67jE9VWJ8WZnyL2yk61/OnhqvuuYyTl7chmgre9+2t4b+4f1n5VhnDUox8VMbOLlG43day8mhVy1k3sPd6B+cnXMpspsKFHgGwZnXg2q1is3DV7jUO4zlCrEZ3USv4NnKqcDIJYIyrcybXsrwNdisH52PH0jq1GTcOzqOS2lAY7xJ4tbJEKNs6u6cSKwplqiIlqQWDthlxtephHhMThqbjU0Pje4e0u4nFpFAEwa2AKCIouq6VF3P1twxmum6h193E2tHakGJyFuktJvEt4hCYh3ebHaRIr0es5EUoHxc47cJ0wsklzV9KqeYKpcZvjoKOHVMYsEAkqylri2DONsV4fETp2jpieEOLgInqlMggnGh5bDQ9P1H4QVXpINrYvNapp8R2YV4rLCigg6cvExoOtlCUzTvuQvmQyWNQzx8eRMjF0Vuo6wVK1M1OrFiubZMQlO5Tmu5ngjxGYG66+D3+Axf49H9byU4CwTFHVzE8GVtHFtnEEdQviYsVej+4Rk/1FnH8JUKvzt1p41cFgBNDOxaRLD/wBk/XkFQChR4BmH4Nas5sTayaIQNepTxpBiThOhtM574TqwVjl/ZCVkpbkhjTiLLiRVPM2jHFtSLSYaJiuYBaXVi4rnLmkQkWheEtpaN3S7fzSRINorLUIo0liOJGYlOKS7Gl0srnuVzFNSbixOJ5kyJJfDFTrIYML5DdapE3fHQUdpxrIobBg6mlsngUQ1/8ThF5yoKCGyWjoriVeLCgbY/MyfvuP9L/u92Jp6zjIPP15FVhpnsby64grgmtVSQHmP7LzYx/9bVP54irVLseMcgflvG5WcMrQficyR1sSVskMx5SBq75IUYpaMgWo2IRjLibQfetILJRSYlaTG5MaACTRzErfx0nCwfj9xN2iSWEz90ojpKDsbo/P1zpqEUO945SL0rjCxrIMogjvPE+55viMstJN8BJYxeFDI5MMjyDx0942rABUEpUOAZAOW6HPqNa6n2RtomjqQPeCVpkGv83bWvmCpMzf9JMGxSaI88OdE2O8VxQ1w3pOwFlL0gCVb1Q4eqdhOF1aRv0USkI0XW+LsSG6Ng19nCgtaFo5NAUsiQEyUzg2pzgmzxsuyfyqRFM6M8qmhBKZVP4xX73dQd++KvBV+5aV+MsrL2cx3TKKsWq0AhGDE2IDaMYiwyKdAqtizE5EksiWk67LD0s/sJjp8AWWYn+zAlk6eMK9bKunfigNRMpeg0U+gU+58GnEtWs+tn5lGfF0T3iyR6Micuc5hYdKUlR5FFK7EmxeQkug4S90VUGiCsQDxhaL3Gu2gzoqHeaTBeg1lMQPkaFZ+fjrKmMoHJKlSIrwkcl4npMlXfTY5bq3qEVRd8jQ7UE4YnPFWIQ14oERhdBfX3bWbgY+e/xH8CMaiIZEt8MgY6HncY+OpegrNwHgVBKVDgAofbv4CpKwaZ7hMbNBgjqzyqMsuSbAoybp/M+gxBiQNiY3KidSpiVvYCKm5KUKwcfDpzZkkKRJNRRE48x6CU4BpN6EQiZWKL8Pm+g29cKw/fSEZyDWb+5oJKzyWxnmTdStq6X9AZsgBpfAhExeEkcTclk/xsbiQBlMnpwtiU44ylJNNGkoYcu4CiddonSYVt2TNOd2cnx66212L2JO7ZTj06t7if2X6bWfp/mlDrLuXY5e3U5kem/uTesX9hS0i1HF27rJsw14d0POPA1qRcQLRd0CyEFUlrGcXHyIwdAj0PKZx66gIbWaNQgaJjl+HYlcreX3VNXbsEvmMVe0Vh6g74itIJh56HBKmfJaKQdT8pe5+5E4q2fSFJXvsFgr77DCfWOFQHojeIELxJIThw8KwcryAoBQpc4PCXzmf/i510QhT7/M9NHPGKeOLUWBu8ZKwHDURGKVCOFRSLY0Yc1yTkpOyElJ2UoLjKJG4bkfwbaawiCzZA1tWGJs/PxZMYUbYaseMxFjh2UlfkyELaIPnJthHZCRFmar4k5yrJdjn+M6PNdOLM9iFXsVjNuke+3UZCJTFXjEmQ3UE06LY2zMQE8thOekcXcGxdf9pnpVBtbaggmDXVM7kHoriOXGp1qHCnFW7tqU2OQ5s6GL04TIls9ryURBHQdmGie6JIrTbRRJ0Qk1j5N8pckihGKhtv3Tg+yoAKFE4N5v37TsKho0n//HdswqkJnV+4h5MXr8d4OklcM9lUZ1+hAk3TkKLtn29Ph0gpdGtresLGnFbl7zkRW3KcaIwMtBwUWr9051PliOcGIrT8y52Eb9pIdT4gCndK4U6fvbMoCEqBAs8ENBoaGt9c422idUoLykmFwmicRONdIquJ0oLjGDw3xHUMTpQqXHJCStqSlCzZoE6idZK0Fbt5osJ/ng6pOD6uNvaNVhR141JxA+qBS1VKhPXM5NqYmdNoyYgJwyxjkkN2n+ybuSOpuyFzjBn1dbLHzyKyPmlX0E6YZhqhbQpsRgNEGcsPs+3FlhElML3AsP2Dl7H6j3cwudHGoIibXq+wybD9t1ay9N+m0T96IN8PE1nFwnhObyASBlZ98uCPJ1YWWzyymjNxvInC9tXL32MSpoHMlgDG40HumqhApW6w6Fh264ikRLo1TUcVA392J2GDhsm8/3uX/RC5OJXBuuTEsYQpew4NweIA7qKFbP2NRYmVxplWLLnpzqeslaIDUHWFUjbIW0XX/0KFzQSzY7vy74YId+w+a8cqCEqBAhc64okwISCStxhk3BzJWygkgawxCYmRJRoKS2Z0/KfSAFDPsVLzcZXheJ2jBNcx+GHKfJQSXG3wHEPJCfGckJIOqTgBTY4t+jcdepgoIEZrkwTkimKm+FpywuQtGdn1DeMz++tqhozMkcYbB+XOSF1OSA5JjEHiElOkQcJpQ6jo7b/7YUXPQ+PRcmF0dRtHNxBVnY4WO8KBX1yF3w6mHOYtXBpMSTh8XTMd/Rto/dJMWXdlEsdRbgxUqCCIAmKeCqJ4mISAZcYnCWCOvXuSISJ2o+yIzA4VkevYjRM3k1j+7PrpPuHor21AhTPPo31fQOXb9+c5bZIuH7UVWTWygZ/hC67myBUVjGdsWnu03/A7rmXBfx558pOxCMv+dQTxoqDYKNvJOT5O6JU49mZbDkCUQomw4LOPXjjFEg02EP8sxe5AQVAKPIOhm5th+WJk6y50ZwfM6yR8fDsATns7sngA89j2Z46KZPxgz5KRZELLWAqyyLmCogydzNtdSk5MQhp0RDb0LDN+lqzM2sXMeh1VH04+GxetrDUlKZwX9zH3/2xkJfP5dDAXiYldKKLyhACiOJJZrDTJ5BmRk3j7TCZT43Gbh0N4cBvq4uXEM704UfBypvnx1Rn3jUr7FQc9T883GMehfe1FyWZBazkhojFJOeW5P0m0HgmpdzhM99vfjdIqtcTF91P02QasRsdP6hM1WHQaEe8SEYQ4uFaiLBg8a5UJm0JGOpTN3IksIfGbfdDsMXBoTaYGFfb6xOObYT5BC+grLgZg+KIyE0utfynhv55ibKXQd3fLUxov8+DjM5ZJVxdcsZrR1RCW7YVSRtGzdjmlHYcJjgw9pWM9LXiyv7UfAwVBKfCMhRqYz7Y3d7Hmz7qYXLeYofUei2/aASKY1YvZ9cY2Vvx+M2Y8epON3m4uWKiGv/hNMX4457aV1K1gxL7BRQ9t7aQViNMMHDvNOVpwEuuGEIiDjsbMiK06HLtr4lgU25bdJg6EdbShblx0aF1DTY6PjuzeYRQoK6FKs2YymTy51+qsFWMOJNakxIIUTaixeT87Wc5iacqRlyi2JiEpGbIQx1oIJJkkgkpSppOaRlGVaGdeN1t+udNW93UNuMaqrcZCeCq9JcUoWwTRJ+1/dPzaPMP2N3emlacT1xR5AhcRB1t5OXM/zHbfz5bKHG3TfMudtF5xMdve0mGtD3GsEFHbJrJKZDVeYtISqxErrLAapG6e+Fo1nEecnkvJ4JRDmluqeE6IVhCEmsmpMkHdQWoOErmHJpaEbP/FNsBmsIkr4AnaC5NxNb5GRJhaHLD1be1RH0z624n7EP0+ziT8tUvZ9ZNlxLHaKCgghJ0/VWHhD5bSfMuTICg/znPrdKt5zrrvUzvkk0FBUAo8YxHu2sfqPxghGBkBWZxf+cAWVu7tYs+vX86i70/h7TvGrrcuZvnf7MpJvl8oyIp4zWYdmPF8jSfMzG6xgFqscwIpSdEqJSZgU4pFFKFo6iqqyyGKWuhSDx38wElr7WAzekIx1AOHUFvBs1rgUnY9PJ26iWqhi280JtRpECWkuheRG0WiGAuIJkSVFuvLnX/27Tme6OLMljiGQrIbR5NFFNyZTa82YUQSMlL1tm/Zi2AJUC68xA6uzRhyDWjFoedq9MZl1nVTNuhSiOOFOI4kYx8TvDj9OlSCMY4972zGUfb6Z845ThCJa9AgUBnWLPnk4/Y3gQ3E3XPD5Sz7l+OEj25Nmph8/bUMX2V1L1QIvQ8YWv4140YSsXEUEh0wJiA5chzfQDGJk4RU5uJismOYnEPW+gdui09zc415rZP0N49RjuKepkOPY9UWRmsVxqYqTE+UkVi4Ly515ERdjET0YuueuPG1yaTNZqxA2VIDdvzO3MuLKGUtZpnUaXEkiVs/XfgvXsfRdWUW/vHtT7p/eu1F7H5jF4hi8L+mT1sNNkd8zzIKglLgGYHghetwpgPU7Q8my5zuTsaev5K2/3jMPiSjH354/dVUe2xd974HfKq9JUZWDuK3Go6/aCnu9BKculD5+t0ggrtwgLENg7R84wGkVnvKfXRWLmPi0l6avnbvU3Yr1V65nqBJ41YN5W/cna6Izy+eDCDz9pr5ntkeSN/Uo/VxIGvWegIk8SVZ100QpRH70StvnIVTD5xIBCu1oIAQhtqSGiNopQkdm/XjKBc3Ij+hsds4bhQ4C3byUNiMovjt24Bobd9sI0VXid0amZlvzorNGc9D1L10mWMnMuUaHMcK0jmOwfcdjOPYN29it0Ke6Fm3BnlGKKTWnugYYbMhFCzhciwBmllQEYyJXpCTC5Y/jeTwjcuT4nyktW4M+G3C2ItWJxo5oWc1Roau66Zy6UYri+/A6EpNvde37QaKExe7mJ/ZGAVICtVODQhKoG2npum44ei1JMRNxa6oiBwqYpddfE9mLGJZcpK1WkX3rvIMlaY6bZUaXeUp2r0qJW1dX1oZplzPEuOST83zbKp75B5SoUrJUVxlO46ZURmym7WsJYadiPTqyCKU9FlRfdV6WrafINy6I+m6s3IZY1f0AdBxz6E5g5CDF63j+CVly/wy/Yl/iKPLHeSnN87YTxmh474hgl17kmWmrKl1CRNvvDb9mYfQ8vX7Z9VXUeUyk6+6EtEw3W1VipURwrIzgyPO3FlRffV6xpakRS6Hn9tPd08bcvfDs+6i117E+OqO6NlkdXzCehVu+eoTHQ0oCEqBZwiOXVHGGyvRc3u6TLU0c+Jih/b/rgD2oe0O9HP46grVPsEbVSz+y4eZeNnlTAwqSiOK45eLNb9XNSvv64cwxF/Sy4mLHFq/7SK1Gsp1ceb1EB47/qSqeYbz2ji52qVZq6csfzB0jYffYXAnPFY8MADGMNVeik44djWQFyeL12VJCWS+ZydGcuREkSUnJMti+EYnbh2wJveYnMSQ6C3bEhTBRMcKjEYHDq4TJrooYF08VrnVGgtCBTqyLGjHJKJuYeAQKp26gaJzmiG4lQmuzEFLPPtntiWSqzc4bojn2awl1wnRWvB9IVCO5SbRRJi4MoBE/TaejmOLQe4YEaPIVviNxilOz85ek7yppKGvStKJM0tUcmUKosBbA0Gb4fB1Kp/hpay0PArrCikZVDTOIlbobHrQp9qvIcmwkeRUWo6GtG0b5ei1nenpxfO9Jkl3VkRCc4a8y1GnY5ecV+a6ac9Q8QJavDolbQOzc5cxiolyoiBuoyURvcsZx+ZC8juRvPlCR/eSAA7UO8s09S8ArTmy0aG33EPH2ESy+cTFvRzZbK93abSPysTkrKUEjl5VZmqRmb1PCiYHQyYXNRBfQAUKd7qX5rFxwmPHcXp78VscTEkY2pix9oSK1Q/0Y4aGMVNTADi9vSjXQVqbObwpUuyNXY4K/BaHpgXzAdLnmlK48/vS+8txOLLRIWhK+35irWC8Vvr29REOHcXp6kJlShIcv7yT4XVEYnX2fMyUwC2nuB7Zc5azJZ93FjE2NkZHRwfX81pc5Z3r7hQ4D3Dkf26mNCZ0/93ts66vvXI9B16Yykt3bFPM+9uZ2x743c3UekxuImjfoej9ZLqtO7iIrb+xiDX/58dM1XwK2PfBzfgdJq0zEpvxHax6bKw7EanJxi6bxriG5C0SUNqkWTpRQGxMTMBOlI4WXCek4gaUdIjBxpJM+x71wCGILB9hmL6H6aTOCpG67Mwnso7Slx3H5MhQLHcfRgSo7Pk0eQFNno+nQybqZSbrHpPTZWoT5SiNNNNwPNFEgZFJ3ZfImpFI5CdxECTWE1xjJ8WmOpWST8ULUEAtcK11KHCspL9Y1duw5kSTLul4x1Bxhd2ofxkVWSCt8qslIWFxG45jojG1xzG+RupO0uc43iOx0CSD2hBsqyTvEsr0NRdr4Yh1NbkmKWsQX9P42Kquc2UFZqu4nGSJOTFLkZQwxfdlfC1g9ok6btcR3EpAe9sUbeU6neVpWj1rxbRp6Q6j9SamfI+JapmpqTJh3ckVjowJiCqH6Pg3QeSyi12J2VTnxvGUaKzDKD08JI33ySK6zCpK727dq5n/sZlVkg/95mamFhkbexQTBaJjGpKMtMaU6Dj9uvmQZuCPb2P//xc9qxRJ2nI2WWrp1+s437sPSJ9rohr6riQpuxATy/i5ptva2PF7l1kFX5X2I3fNon3cacWyD9/L8C+vszWSIHfNJVNuwUxVOfDeDzI6Okp7e/ssA5misKAUOK8QvHAdI6tKzPub2YnGXFj0L3shCMjaM9zBRez72cUgELRAVnxgYgnUf2tzblJTAvWO1LoQP1uzNUHqL1/PwSs9noqQgbrmMo5samfBX9/1pCwv+UbSh5AoIv+65N+YI0KSKsBal4XjmJSApC/BOYtJLEVvl9v/48rDjhJK2qYIA3ja1jOp40R1aqxKp+MYm1Lshok+ShBq6oGbEJVYst4YAN0Q92KtNY4T4mqf1lKNwZYRekvjdHmTVFTAaNjE0Xob+ya72e7Mo1Yt2aKB2Yd9RMgcN7W8iIAJdTLp2ojVaGBVSujS2EEb8OtEMTiuEz2TJRWiM27GgkN0PTLHt9WeMxaWLEmJroMS6xoy6GQCFZMGGps4YDjTfpLVkpnjsvfJjO+xFc2LChpmSGsSdxGTSqNyAb4qyqKx8vWZ/jdWaG5EHDgckyHXWFKmM8QtPqf4ugm5ExJR1Hz7ImpEMRmUcJQlb4FopnyPat2j7rt2nCTTThwXpEjrOClr30rISTJeMZuJx5jE7WNLIkRWLockkDd2IWaJmkRWo8lFwqHf2py/FgaqfdFYNrpcJd9mzj0ryk7yIUz3Cod+czN+R7qdcZmhq3PwuRXcazYDUOs2mHi2z5LD+BRjS5fAnp8fRIWDiAZTMjl3YVpbKf/Zd2D/b15DvTNDjlUDKW0Y4tNBQVAKnFfwxutUTpzebekuXUzQ1wF3PYzpaSdoK6NW9KNufxhn1TLGL+5meoG1hlSOadoetr+MseX2jahyXBhZY8vDV47bH23lOEz3arsfkfmzHcx1V+Lc8QjeuE9pxKXaO7M/zqVrEKUwj2yZtb96qk7TcZOkq/5YiH/k8QQQZwJk/e0N5MR1Q2utyJCQRAslspJkY0ziTJwkkyezLlGPzWT0ZLfT2uA5IV5EOoyrqDqGmu9al5BpaFubpK04U8jThmavTn/zGMuajjFQOkmvO0aLqjNmKgx77TQ5PiO1Jo5roVad3ZrqemFCmmKypAKHgDhxI2YJJMRu5oyfEidFTN7sxK0dmVnaRmUm/yxEEmXXeHLMkiGbERNNitHknSWSSXHBrOFb8l/j42etF9nzU24UyxPFZDSmQqdxQ/nPlqSQs9rkJtnZbut4ooXkXo1jP1TkQorJXRJM3DBoYsD309f+eugkQoFhXF06cAiDBnff6USbZmNPZjuHeH3G3aOiANdcHxM3FTbtWmyc0eQilWsqsYxkCYjKbDBXtlC8ToOpGKYWqtzLCjqqly3psnqXod4VdSvb3+w1EfuPRPEvSmzqenLMOI5pFjepUvb6K1GghemFqetttpelhITNoTc0GwqCUuC8gtz9MK13P/F2AONXLGD4SpfFd8GhF3QxucigAsWqx9oZ3txr/erRb6Fjl6H93x4AwH/r1Tg1Yd6XHmHifZcz/540gl2Vy1RfuJaDPS5EEfbVXsOen2hi1dYu1L1bWDDUz9iq+UjJQ1cqiAhSqzF0XTfGVfQ9Mnt/wy076di5F/lxdFeyv+3YcpK4deKHiKSTQEROSqXACqtFKrBOw6QUk4N4Eg+NzbQJo6edExEPEz2h4lRiJxJfM0ZjYr2UTNtlJ4hSQoV66DDllpJA2tnIkRO5l9yInLSXqiysjLC8fJQB7yS9eopObZiSMY67o7Q504z4TWxTfYzoJhvXoiQZJmO0Pb62Ev1aCX7oUPNdakoIlJtmu0hGuG4WgpINFE4qLhNZfpSaOSGquarmSGKBkcybd9ymQvKlCuJ1CpSTnQxVSqRyyquxFSCeaOK/lLBqLYlrL9ezyFqTficiQDHZURnrArMXHcxaRRon4mQytu49wY6BhMrGqGRJSnzsUBMGltCFoY4sgRHxjVLSTWyZC3XGOiXJsRLSGRGk5DinS2LihhRRBlKGWEh8kKjb2bTreFKOSWTWsjDbobPLGi0sRJYcVEpysut1et/n7rwcCSIlHPGimKDHw5HZNnccJZkU8KjOE9F4xOeWGaqU4Mw8/umiICgFnlEQT9j+/osQN1XkBBjaAEfXXYUSWPH5k4TNJXb+7mWs/NMthCdHk+0O/sY62vcYVv3FTrb95oqE7YsWtr9vZfIbFC1s/9X5IPNxpxWL/1eUgnmKH595zlr2v7iJpf/7x69gKlEwrDiSxk24JsoGiQrylQKayz7tlSrzm8Zt3RwsyXCVocmp46nUDQMQYgNeA3GohS4142JEJWJqybmIJhBLYtq8GoHY4NhALEHQCE2uTymq1aMR3FJIUHaohi5TgQ3sLTlp0GPcphGFqw2tbo3O0jQd7hTNukaLqtOmDc3aoSKCpkbVHWVN8xCBcTjodDBRLyfkwojKPS9jEuZpq2ZbckNqQZAUNWx0eXnRNp42lN0AP3RS67Yoq2EhKmfpSD/niUfu2kWBtBK5exJROplpGVHxPRwRTpHY6kGOAMX7iyFHeoDEbZNYL5QkLi+tM8Gwuf6DGJ1JDY4noUx8ljS4U+KBbvSbZvqLiu9PUBEZRdl09djVFZ9QdihMoBBtq2T7Decdu8xy7pq435CSd5W2G499to+WNUka9Jxx0+XihgQr+NZYFiFuJ+MSjt2AsQsosUTE/cpeqtjSEI9pw1AmzyJF4tpLzlcgLyDYcM9lLRoN5CoOoLa7ZaxDsWZNZHHTEQGSOHYnTtGfi+Q1ktKG8zgdFASlwDmF/+J1mLLOp8zOgeCF6whaHCpfu2vGuoH/OkHYVkFcxZ5XVuh5QFEeDzn4PB29CdjJXAWgAoMObPn2oz+5hr7bT8DREwy/eiV999QIWhyOv2wFy746zeHnNKME+m+dSo5V7/TY/yInCfwypxlOIo6aWTL+ySLzg0+kuzNvxrErp+SGDHaOcHH7EdY272ehezJHMJzoieSQEg+TYXR1HKrGY9w0MWlKGDRhtN4XB19cquJSMx6+OISicxL5MWrGTUhPDCOaWuQQL+sAV4d4KsQXByOKmnGjeJeAVqdGRQUYNJNS4oQx+BLgKPBROBiadY02r0pnuTSri8pknpCx+q3nWBLkOk6S2pwb5pigOKGNp9EhGsHR6RjF+8QeuyReJEOMspct27e4qGIck2OieIyEIABIKp6nMm6nfIZPiji2R0xe4zd5eY33j4KhsynN6ZaSZEmhja2ul5nQVJY4xBWJ4zfo7MEaxjL5HFv4kkGMXH2xGyoeSxNbHzKTfXR+jYlXkiNI0au8itqLiZzKbJsMcNy/eFG8b7pf8n9CWpJhajjJBktDsj66nk5mX51pN95kRj8lX905bSrTn3wXYotGVkQQMqQo7mOWIMRuRa3SNpQkwdtek4/nhUn9rMBogsidFkRiijnylu1rfL6NKCwoBS4U+O0uQVlRPtVGSuGsWMrYfA/RUMmsEkdwVq+Aqo9b9cF1UFKhNGkojQRAqaEtqPa3Ysp2oql1KaYH23G7mjh5mdC1JSBs0tTbFd7wBNpvxp0W1K0P4C5firgO0AY4VIY1xoukqrG/9bCM7Y8IHDuJmZhEL12E2WfLkc/iOUi75rroZYuR/Ycw1Wpuna5UUIsXYtzskzX/p5Uk5KSjqcrajoNsat3O+vJxOnTDOABhNNM4yUxnMutCfKYZNycZNxo/IhkhCl9sYKwvDlXx8MWN9tF4Koha0lSNx0jYzJQpUzVejijE21e0T1n7VJQfERlNVVx84+LpAE+FNOsaGoMvDlPGAw2eGHw0IbaNDneaeslNLERJ2rOxbTYeG8DTIY52c2nSufVOiKctQXGVIVBWMwKXxOoUX414/zjzqDHMKE7RjkmKzU6yBCQMNUrZFOxc3En0Bt+oj5Io+2bJmNFoHZMkyVlDGi04jRo3+W1U1L7tg4nuCWsYsf3JliHINh2ThzmhMjEvjT8EFWmORMaaJD6FhvsdZpDJWclCtH3Sn1l+eI3rIudaagHJEoZkWxom3tjSkl2W3a6BrERWiUZXTjbTTiSKJckGI59qwie/PIpGSd04MRlqdLck565ScigqISdOKaS5UqfsBWm/okB4pRzr1hUiF6ma5ZpmB47MdSksKAUuEDTfMrPIWSN0ucyOX13A0n+bQt32YG5d0CJse0dvXi9LhMPPUUBpxtuOKNj3ChtMqQLFok88yMmfvJxjL7bO1V1vaGL+XdD/mUfZ/ruXINrQvlOBdtjxy/2EzZHrSGDJFw4wvbqPA9d7NjAOmBowbHtHLwgMfqeH5gf3s/Udfaz5q5CAua2hALqnm21vn8/qvwW278qtU0sWse1t86zrapa3r9hs7zqGlnKdZe3HeUX7gyx3p+jQZTQ6mWyeCDFx8XDodVx6nfxyCHGUAXxCmU4ITiiCo1SyncFwwgSMGJcTYTNjpmKzVOLzxVBRPhXt065qNj4kIihV8axVJup5SYUJ+amKQzUmSMZDY+hwptElocWpYURF1hiduKgMilBUYiWKlwVGExiHurGWFEgn69j95EbxDq4oAuVQckLq2kktKBEhii02QcaCEbvHYguKo01iZfGNDdYFZsSCQEw20u+J1QNyqr4Aoo21BGX2PVVb9jwzVhVI7ikdBYSKqFljVFK9FtIbOuvKSbad/XhJNkwUxxCTn7jas4on+9kUMHKEKGM5SchYfLDM74P0PJNxUVFjuWGSNGYk6XRsdZrtvGJikrGOZNuLyUU2JihTUDLpm5Z8vyM3nYqyzvKunPx457+n5ybScG6NFpQZxEElY65cwa34tDbXaK/Y31MoimpGTsA+b0JEHLufyfQpOf/0oZwlr0+makBBUAqcE+hKhX3vvZrF/z6CeeCx09pn38ubab1kEz3/L5OCnHkOte9Q9H99P9veNZhKSEu6nTulWPlXu9n/puU4Nej/lx2EkZBRTGRW/eMI0wvb2P/2S1n9F7sQY6BWIzQhKz62A+VozIIetv1SO7vesgjjSpQimlpRYI6XhMwDbOxNGwmaVE63JRw+zuo/BdMg7jT+Mxs5eXHOUZy2lX3BVFByQ1pLNfrLoyxxp+h2TmmbmhXOLE+QcJbJIl6WXZf9rNF0a5cOLQw6E4yYMapirTExPAwVZejUGq0UEGIkYFymqIrCF40vmhBrvXEQQizRCKN2Siqk1alaa4tTw4hO3E414yZupsA4+GL/j2Ec+/ANjJPEv8TWEEtQTOICC4yDqw2B0bm4mZjoxATF0TpnUcki+90SFkEkJS3xNNMYiBsjzZTKW0bsBBCmMTEN1pFs+3HMTbY/M4wQGStL/jgqycCynxv3k1wbWSvOqSamRAAwttDkYjuyxIOUNESHMmHmfBtPJF4sKqftEreVO7d8RM+smCG4N6v1JPNQiq1AWQLXYP3Ktq1IrSYzfnKNbzdZcpTtT7wut2/SoTnISbRcW8tJuRxQ9gJ8o6n6LkHoEITWvTNnfxr7ljnWUy1lVBCUAucEEhp6Hg/Qx8dO873eWksmBzQtr76W5v+yqTLaV8y/23BsrUO9A8bXDSRBaDN+PwLBkSF0sJx6O0yuXwpqKZP96eSvT4yjBtqodQsT1yym9e69UKlQe9VqKv/xIOLXccsloJ32nUK9QzExKEy/Zh3VnjxjGFnuYbzF9N8qyMgY0JOs81sUQXPaQeeS1Uwu7wSg5fYA1drCxNp+EBhbqvHbTP585vjBx24ET4dJwL2eRcRao0EZQpHTsq5kLSMxgckumws6PrqCNu1TEUMYHcsAXtSOp5ItMcrQjA2s9QmpItQidanYxRRiSYiPkxAVAE+FmCiuxjcuRiu73kBAhpgQW33s/3Egb/zZ9n3mucXEIxuvE+9jGsiHid4001iV9H/JbJfozTRsQ0N7wKwT21yYoWcTtatUGhQLs7hMOPWEoqLJp7Fa8+ztpMQk33f7W8nq8SRBypAGDecaizKoYssCIEajndglliUZp+p/gzVlxgYN34VkAj/dunxZi4hyUuXVxnFtdIslrrnkb5bG53r5ifuZbDfL+YmKmdDMbSI3kHZsvIlEVhOrDJ3GaSX1tWbE/jDncym/zenfwwVBKXBOIH6dpq/cRWN8qa5UUJUy4chofvvof7/DcPB6zeo7belzp6ZovuVOSks2M7VAOHqVi2iDrlnVx6A582NU4PR0Y1yodwpD612CVoMoM+M3Yzzh4PWaVft7IDAcvdpjyfc9lOdi2uyxu+8/ydSydsaWaw4+3074SWcVjK8w1Hpcln5iC+Ho2Jxj4XR2ML6mi2NX2Al06b4+pgfaOPBCHTWZpotK/LaWfaOMP2ZOIhTNlECbhJTVTILSiFORlFOty7p3ZvueRUU5eNm4iazlxb7bp+2iKCkwiA3kRRIXjR+5gOpRsG6YsXpkiYOjTFJpOSS2dFgrimkI6s3GrQANwbY6t01sbclulxyfPBmJLRdJltQsk4aOztPuEImINcSPxK6iLCmYc4J9AuRIk9Ez1kUdmWUyVQmxSVPEs/3IW3yycTNZV1HORRLtF3/P3jYJGYh+T1qJFd2L3GS2/2JTjOMJfS6NoScwjuQDbUkzn2LS80QkJTZ95Y4ZBa67YSb41ZKqZJfIypJz5WTbhLmJylzIkpVZSUrDtg19jq9VaDQ135tVAToWHMzdg9nNhNmP3WhtegIUBKXAeYWJV1zB8UsdBv/3TInoBLPd4AId26D3s/ex88NXseTbVbxDo2x7Z1/yWw2bhG3vXwXK0LFN0fv397L7g1cnQa6ztQlgHtnC4KMKI8L4z27k6DqFMsL2N3fl3waiZ2RSkVRsIbZt71/Dmk8cIqd+khAMxe7fuJS+ewMW32TdPQdv2MTkQpPEujT2xx4nMhtHf7HpPTQK3ziM+M1s8ecBx1jsejMIhsHM6bZpdPFk921c19hG9rtJIkgMvhiqYpIxcABP2WKAoQhVE+9jUY/iT3zR1NFUxaNqPPt/9NmXNEPIBus61mqSuUFi90vduEwEJerGVluOU5pjZK0mWpmkvkvWohEYTSCOrdZsnGRdo2ZKkj0kKiFPcaZQmBGogzxZiNsykYsm5+qIlttklzQAUmW2awz01Q3rk/6ZNHNopgsp/j/uY7o+vsfi4zYG2za2FZcwaBQGDCVfEgHUjAykvMIrSR2mWAMl1vEJjMYHCHU2nDfZN0sMsu6e5Jzi9F8Tx75Ebq0oTsOOgCRWDWmceGf7faLAsWn/pVKQU1QOjSYIJKpQHY2BioJaG9uDvEJxQ82nGRvnCEIju2zYcDZrS3RNjbFihkYU9bp9abJKz5GLLA4qbyBVs1nTcoQTlYzv6eKME5QPf/jD3HTTTblla9asYcsWq65ZrVZ53/vexxe+8AVqtRove9nL+MQnPsH8+fPPdFcKXIBou203LQfmc+TXN7Pwlr0EB6LsF2Yn5UGTMPTrm5nuE7xx6zpC4NBzmtBBE6LzdXXiH/HEIATvXEdYshaW0knN0i8fZ+jli5laoABLEPa/vJOu5RuSYF5RUBpTLL3lBHt+sod6l2Rs0tFLS1ZxHcAR9v3UQsKSlY4+/K5rqM6zctdHfn0TQYswfJVLafkmREF1niRtzenfJr8uOwH4ocNYUGZPvTfSDhmnS1dyRCPr4oGUhMwWfxLDUw6ecpgydXxCfEldNaEIPhBKSjJCFGGUbRMTC7Apzg5CRaX2s5iExLEjPrF1RCcxJ9ZqYlOb40yfGDYINnL7ROnKNuvIkpPp0KMaekwFpUSvJcxYD2Jl0tjV42gzg6CERif7xUUSk0uh0gyd3OUiErlzwsi9ohOSAhFZaLCaxGh0ocT9sCujCSCzbdZtY1VnDSqyvECa2mwiwTMxM0lN3OfkuHMGPtqbPqcDk9EVies6pTxcknNt7K8Vh9OJWydNY4721en2NuNJEqI7w4o028t+IznJWibITKIqVl+Ozi52T81l4cgeL/uzjNSFE/XmyOIjQBDo1OIT9cESojjVX9kg2di8kuUhWTeKkvz/2YfjbNaTmNAo8vor2QdVfJ+EVpMmsXpF5x9GxzCx9SRMU9DjOlLp/SA2BTk3VhHBmWUY58JZsaBceumlfOc730kP4qaHee9738s3vvENvvSlL9HR0cG73/1uXv/613Prrbeeja4UuMCgPI+w7OBUBcK5FVfrlw0yNc8WRnGqgjLgtytk3UW07wRxhKApetub5RehQoVbtQGu5aOalsOCaS4xuUjl4j2qvYbJUU0zoK66lGqXRgUQPrqVzss2MrZMp9LQs5l5I0z1Z+oALU4/Ty62WTn1TqHemXn+N2DGPDLrgzhVgK2GHkf9djqdKdp0Fe1WaVbeDAIyFyHxxY59iGBE7P/Yt/JxI/goqlFciN9AIux+KtVNwaFqSlTFS/RXPBVS0XWc6HEVohgPm6iLg0FTFzfJxEmDYhW+camJa9OWs1aBzOdpU0rcQYFo/ChLZyooMR14+KFj3+KjCTOnEEuabTMbQQkjAhiEee0Uq6BrJ+JYqVfHbao0SNUui1K2TUY3JWOdyF3mGRaN9Fo3CsNlXS9WfE2n4lqSWkyCwAqeJTWByE/0Ng1YzZmiq2ILTzJ5Z4TmlCTK+laDJr5AOiFIkjnfxGqSIQEztUoEtCUxYBKSohSZ2k5qVldIbJVI2pxRZTt7YqSTPnluMLPRzOcciSCxasbXK77PjFGR4q3OEcls2rUGjFKZTL2Gsci+sGQLDUJagqBxn8ZzbMwaathWjLLZdpJPKY/jYmIxQDEqLZmgbBahMQqMnj0WaO53nzlxVgiK67osWLBgxvLR0VE+9alP8bnPfY4XvvCFAHz605/m4osv5o477mDjxo1nozsFLiCMXbuI45c6LL75LoKo5Deel8SMxS8Ge19eRjR4E4reT99D8O5rmFxo2PW6Flb9waOYqSn0iqVse/s8IJ3gVVTgqvmw0PdPDzL+gSuYf0+N8r6TbP0ffahMWkLuuawddr+hnbBiKB/XKNel/V/vofyiK9n3suhnlHnBSRth5gMs+3Iq+e3j/iXtNbQpTuMBouXxBIV9U66GHsP1NjRC1XiElf0sd+u0KauHknPxZATc4mVVCamKUBMYNx71KCh13DQlLpZ6RFBiEbcQTc2kBAXIEYvY9aIRHGUiFVuTkJQpU0osIL5xEvdNbAmJFW7jrBt7bDUjriOOEYldOzG5qIUu1cDFjyaJeMKElJRkM2ScTKxDrFsSTzZB4OQmmdj14EaCVlqbhORoMiQFS3B8owEHY1LyEGaL18X3Q0PGR849EU/ukLzlxm6KuCBkNq03diuYSFo+V6wvc3/aOU6StrLBKLHkfnYSzGfcKEQLWsTqxkR9SMTfonMIQ5UjJmkBxawFJbbMpJYNIf92b11VOpkwc26QLBqtPEl/M+fauAvk2k36GGYsG0Kq6qqyAxm5SqKSDvH4h7ECazSEypmlr8nYp6nX6brommiswmvWvabicRQ7Dpnq3bnmE5KSva9Ixz+6N5KihfE1jtfH1Z+NAse2p534fmPGPTPrwJ4mzgpB2b59OwMDA1QqFTZt2sTNN9/M4sWLuffee/F9nxe/+MXJthdddBGLFy/m9ttvn5Og1Go1arVa8n1sbO6AwwIXPuodht03rWflpw7jz+9g16ubrQpsZmJf/YkDjF4zwJFNit0fTl014go7brzUxoFocjUnshhbARMfuAJTEva9pIRiPjFbaLSMiso/IGo9hl3/az3KgImrCWeR/Ro/uzMud6VTiyvGkg4Vv/1kn6+Zt6XkjUryy3OHNbZKbz1wmPRLHKu14BuHKVNi3FTY7o7Tpqdp11W6nSkqKsRDcBRUxVpEpozHiLGaJTbmo5Soxca6I/HnwFjSAmm6bWy5iHVGIA0MDYyTSOY7SnIpvPH6OA04G7Qak5RsSm8jsq6DOF04NDqKN7HWiiB08AMneeM2YUb3JOuWSOI70rdsYzRhpOxpood4cj0dm1XiuhACfpjP6Akyx4krQ8dWk6T/8dt1qNLJIHP/zIjzyE7mjdsrwWjrp8jtF1eRDtVMldKG46UWElJpdkjrAGXRMAlKVPnYhCpRjo0DfJPN4/NsnPgbm4+tNY7VH1LGIFrlXTwmM2nmTqKhHSFPYFT6J9FYJbL58WSfHbOYACUEylqT4oJ5SaXk6H4zWhP6kp/cg8y4OxK5VmOLkCTBviIZwpUbX/uMSqpONxKHTN+S/ZKXHpW8jKiYfMTbJuMJRPWMcvdh43VOLEf2JkkIsJC6gBotggaETOzNaeCME5QNGzbw93//96xZs4bDhw9z00038dznPpdHHnmEI0eOUCqV6OzszO0zf/58jhw5MmebN99884y4lgLPTLQ9PExptAuAkWsWoANh4L99DrzQS6TlEZCpKjoQnJpm0X/VOby5jFNT9D5QZ99LvOTtofEFJPlRaiGs2PWmlH8qquwDCKjOg9E3rcd40LlF0bGrnlhzRpeVOHnJKY6TIR0pyVAzt2ucKxpI0sw0IzJvcXYmFexE6ocOU75HOdJAiSf4ibBCWfu06SrNukZF+ziRNaMeuVOq4jFpykyElqA06ojUjJu4TUyGDMTHCRLComb8n81MiYNQc6cUW0tMXvk1K4IGzEpQ4nFrDEj1QydnoYhjHZKJSFTysDbx2zT5iT2xUGRM24nUuBIbBqxV4rvPp/LODCyNZcMT4pUJWDWBzk+CjfdE1rqQnYSy0KmYX7LKZLY3KioQl22vYTDj+AfVQPLj5TTslyNICgkFcVTiTjDx23w8ljEZyVYfztSDyZ17PBEqG6ApMbHInE9awZiZ/KSBUEDGOhD/aWxMRXYo4lo78ZiFKrUcRL9j24xi/u1Q69CcvMxEk7yDqEw9sLifDVYXQWPEREQuuifjeywmRdnrFJm4BBoCaDN9zRxLiYJAgWNJHqGK+pQGyiWWtMbxNJlrIQ3HAXAFCRRGKawpRdLfSaBt/+0FzR1HaueQoLziFa9IPq9du5YNGzawZMkSvvjFL9LU1PSU2rzxxhu54YYbku9jY2MMDg7+2H0tcP4h3L4Lb7eLs7CfofWDNB8RWr/5IOoFV81qGdR1hfvde/HWbsYbE0rfewj9wnU4kxrl25LjM9wsmReoxmd7DtE+YZMwMagRLVROGio7h5NNap399keceTDmOIg0NqeSbeKFOe7RSExyG6d9SmS549fc6M0rDBVaWyvKlF9Ksk8MismwTEkHlCMJeU/FirAkEvFxoOlEWE6CS7NkJM5kCaIg0UYV1UZikjzXGgZaK0kyMWbbNmddyHxvzCKNCUbWFRNP+nG8RTYzZIYrIX7zjYc3U1gv6VS8be6NlnRi0/atMMQgohPxshlF6aL2o8oAScZE7HoRAwQ6Pwk0onGyFVC+onxCU+sxlsRHbhZ7c2W2N8pue0ynXr3ZflRJZ6NNZiPeufGJFgmItnpFfkeYTOQSq5jGjTVM1jPJkt3PndQ404ravDAa51nGJdrfmdB4E7adepfJvXS44xp3KvrdxRl20V+ty2AqpoEEkFx3BFSoqAw5dsKO/rKB8ABdt+4lGOim2tMWna/9E03S/9hiCkSFPokIibYWYvuekd5noSVFelpRGrVWjXqnIWw1M11ZmXFRoaI85CRW2bi/QZvgt4dJvxI3THb8I4uLO+Hgjar8s0lI7xsFxoWqlWoiNJnMJxORIpO5WaKHop7SeEMep4uznmbc2dnJ6tWr2bFjBy95yUuo1+uMjIzkrChDQ0OzxqzEKJfLlMtPXhGzwIUJ3dPN1ncvAm1oPjLLg/pUpAJAYNF3p/EOj7Dtf8xPlkH0YDEw14N5xsNYoHUf9P7Nnez5yLUc3qw4vHlgppu7kVjM1v5sb3ckz+PU1Jy02TBZziBa0RMteuiKAaM0vh+tFkXNc6gGNnul4tjCfCUd5lwtWUGy2HIxHXpJsG1gbIxJTEqyAaZxoGdWjCz3TIvJxywT7hOJfKXryGeLxMPSOFdJGmeRxDZkYy2yEyOZccxclFm7kXlwJ2QUkqqvEmqMFpQ4GCOzB1cmb6KRGyETGxLHhZjorVMF0bEaTeQNjUZitjQd0Qz86W3s/8Bm6l0mcleomdsLVI5qFv7RKVL4zwDC669mz2tKtkBnropueg4qSN/MZ5AlZf+Zf5eh7Yc72HbjqvScGq9PtP/8uwwt/2oz7YZ+fTMTS1Lr3OL/rOF8775Z+3r0XZsZW0lKorK/tdBO0M6UYvHNdyHB3FVBA4ADB1nUWMdUKfZ9aBP1DpP/7YZ2DCS2bOjM5YpIEcb+37lF0fP/7DU7+ZZNHL8iTk9Ob6us1Vf7iqV/9iBmcjLXlfrL17PvpU6qsq3s9Unus5gwBop5Dwjtn7udJ8KBGzczvdC2E1dFTn4j2fvPWFLc/bCi/e/uZOcTtmxx1gnKxMQEO3fu5Bd/8RdZt24dnufx3e9+lze84Q0AbN26lX379rFp06az3ZUCFwjC4eOs+ZgN5pSpKcJajVUf3wdKUV8yj90/mSkXmHujjD4rOPCiJlTQRMYxbVdl3gBOBZX5gSUxKJljiIJVn5/EOXISaa6w/a291oyqZrYRvyk1tpu0md0nd07Z118aNmpA5k3dYElKnHJcc0KqrmuL3mmD58SVeU2q/5GxZsyVUhsHigYmzUSI/5+NYDQGO9plsw/8bNxtVjdLNF5zqXnOsJBkffhZMzjkH8zJQbNDamMLSN5EVdLRmEgmp6htsT8Vr0smOsn/D3mV2NgkHqbkZPDbQutDh2c/wSxic5LvEwDLPrXLBsLoU9zctfoMccQzDe/urazZ2ZXvh9bseOsAQbPgjWtW/N3+dN0c4moyPk44NsGajx449TkZsdtGXwf+eQeqlBbHNCdOzqmT3P/F7Qw0V/ILc+IpQGhswP5ThPEE02TANTbzJooBUoFG+ZHrCOyzQkPvvYp5/30wOb5MTiXnNu9rW+n9XssTHFAIpqZmLK7cuoWLHu/Mn2MWmR+VjE0wdw5liqV/vwvKMwuRztnuxCS1U2zaiDNOUH7zN3+T17zmNSxZsoRDhw7xoQ99CMdxeNOb3kRHRwdvfetbueGGG+ju7qa9vZ33vOc9bNq0qcjgKYB57lWUDp7EHDnK9Bpr+SgfmYTjJxI9FK+5AlJhYvMyxhe6uTeeao+i9qIrEA1+Wz4bR3ITD7l18bJ4u6ajmpZDwvG1lhjUO8B/4ZX0PCKMLdVU+6zy7MTiZkodJUxZ595kZrPCpAdvOOn4zbJx3RNZieLt41gIkcykbElKEKSWh9BoXCfE0YITOjZIVacBc1mp9tg6ItHnbNaLiQJxG4W1ZgxsY1dnWC3i5bPvE6e6xvvkggEz7TXOJbkgvpiYzPI5SzwQhfah50HF6Cr7vWOncOxKsQHM0T5djyi8aUkOM7JGU++2FoskpiIqBicx44r6kyVVjeJhEmd2RGb90skawd7MBH6aCA7PHcf3dMJMTs54ewfou3cBQUXhTQVP6vyC/Qee1PHDoaOnv+3w8BNv9BThzOth6trl+B0G1RSg3SgQNlQY37GE1le07dI0Dadq0R2PjxHs2Td7f4+fgIZaXacLMz6OGR9/qqczK872PXfGCcqBAwd405vexPHjx+nt7eW6667jjjvuoLe3F4C/+Iu/QGvNG97whpxQW4FnOZTi0HVN9N3v0jQ+ycHrLSvvfsyj3ZbdQVcqSNnFqSqG1jsYV3BqCqe9He1bgbND17nWn+urXABsTER0TWFKks+q8RU6s23rAUPPd/cwsmoZYQVq8wz7X1pi9V/sJiwto9oLKDi6TqOMrZgcZxmpUOH4EFaiPhgbw5IejExUPenbeAM5yc3bsc+okcjEk2DUnkRv+RKtM+KAWG0C41iSEqfCOlqoq4y4WJwGm8SSkBCbNJBTJ9kmiUXDZMhD7no29DV3LtFHgblITS4uRGW2bSAbc7pkyGyXXZ4lJ8beI7quKI0oOj9zO+GvbESJ0PmZuxhfvMFeu6i9+d/elxBlgNqvbabeoWxAdpxCG5971iQ0g7SmliFLUFTyVu1OKnT9dN5dLzw0f/mJK5c/kyADvex9tcLprFnBNsemrft1F1sgEsRX9N43hf7RA+l+567L5x2UyOmUPjq/MDY2RkdHB9fzWlx1+gE3Bc5zaDuhWqGDqLBb/B3rf611KhZ8zD7opn9iHYeu0yijWPX3xwm37ERXyuz8vStY/O0apUOjbHt7b9K8O6lZ+r/v4fC7rmFy0CSTyJJv+pT3nmDrr823c4dReJOKJb9/D0PvuIbxZfYtWQcq9bUCF338CMGe/Tgd7Wx//0WIK7Tu0Sz45D3s+b11LLgjoOXhw2y5YVH61JnFh54fg7mHRxR2Moy/R75ru59EfxArYsZppkqTCCnZVFqTpNPmeBDksk7mFNSKSclsqYSN59lIpnLWJJXfXjLrs9oSWbNU1m2TbXe2PpCPGWn8X0WZCvPvgrYv3g0mTO+77OcYJk8cht+5ibFV1spiysaOvxMRyYwYVs5y0hDYKKGyAYWhwpl0WPXhhzBTUzmzeIELE+qqS9n2P8uUmvxUiybUhIFOrGZq2mHFP9fRP7z/XHf3aUMgPt/nq4yOjtLe3n7KbYtaPAXOG4z8wrV0bpnA2baPoZ+5BFHQucvH+497ABBtrSTH3nYt8z//KAg4VcWyr4xz4upumhZ3UP7ugwAc2VDBqVfIiZBVhKNvXce8h2r0/6iGaMWu17cytL6Mc1k/EAUYaiFogqO/uo6p+ULTEc3C742BCEMbOhhfEbUZhqgrLuLwczoscVEwvUAY/pV1LP73Kab7Kxz8ycUgZqbrJ4vsZN7o5pE5vkaWAIkrk8YTdxTUIpDEQ8R8z4QaMYLRKiUoDfoaWUJiF6iMNgN5bYhGi8YToTEQ4FT7zVq4KHPujZkfGYtUPjgvu59K3DWlEc2Sb46DCM7QCEFMPrIkxJzakrHgO0fou6fF3kdvbCVsNoiJSIqQy15JyEoS9xJZcaJYhNZdDgPfHy3IyTMEtVeu59haD1SVMLBEVyCRiE+sZobiep8CBUEpcN7AuFCd30SFxRjPyj0bJ52cWoYCqt0eo6sM8+OsLgFVDxgf1ARlRZzrVe1LZ6bmg5qg2aYfjq2E9r2aUj1AaW11TnoNuq5o252prSJgPGg6Cm0HQ+SeR3AuWY0ygvYVLQcUUq2BY3UFWvcpphdE846n0H6YnNOcaLQeZJerOT43bpd8jxqJ3UEmlsuOiYogSlnJdBFETE4+PZsh0xhXknPjZIJxZ7VmnApzkZHGc8ogEcBqWGaPnWkzzsBoGCMVjUMSnCxQOaZp22eQux8GeMpBo+GO3dFBFO1XbiRodggrMLkkSPsR3VLJqScZKylBad7v0L3FR+599Cn2pMD5BuPZ54KEVgUZSO7LhJwEirbdDu5Idc4g3mc7CoJS4NxgRnQjdH/6DiZffy37X9o2azXj8jfvYXDXSrb9ak+yLGwStv9iF2hD09GGAMkIg5/byeS6xRx4oQOiOPBCF1Rn1A+7YWlEMf/jtzfY4zPQDjt/roewSSgf0/T91e32Jf/oMPPvtZsMv3MjxlXM/+Rd7PngehbcHjD4xQNsuWEwo2lC7q1eyRwvUHMsizNPLA+xKYJJKqeoKCNCJa4eoroeItrKasdEBT23nlWGdEjshjhV8GnSoVkanOFDym+SE4KahWAAqMYMjswkn5QGiIKFE6XTuN1YBifT7/7bqjjfnz3t9ClBhHl/a1My3YUDbPnNxdb95pCkIicEKhbQioWwfMXifz1CuH3XmetPgXOOpq/exeLdF7Hl19rTewDsfRDHG4079H/iXkztyeS1PLtQEJQCTzvkOVey76XNACz9yihy/6M2SPa3NlHrEtyZCQAAjL1pAycuiSMmLdxJzfKPbWH/L19Eoz+kMfjUmVKs+OhWMEL9imXs/olSsr46T9j74U2s+OQuahcNcOAF5WSSa98tdP1jJHAgUO8S9t6UZp3FxwnLgBL2fHA9QYtw6Pku6jmLrcWiMSYjfqnKKsLG67NkJovMdkpAIgEkRRRsGWe+KKyLRGX+Yp0FpRKV3UYOdEoZ9SwRaRQSy/RdzbY8ex7ZNO+cK0blY00a1e6yYmc5FV27bPG3Q8pDU2z/pbacxSluJo4hWv2xvYRHj521QMTg0GHWfGQatGJqwwr2v8RJz5d8n0ujmmUf30J4cvQs9abAuYQ8toOLP9DBjvetJmiNbnwNhND1qGb+F7cQFuTklCgISoGnHd7BEyy4ywMB5+hJa2IXoe/eGmFFI0ox+YYNtP9gB+Gx48l+HVvHEdXGsavStkxJGHvBKoJWMCXF+E9ejTjQsVXRdtAa7834BADiwdgLVkVvsLDoe4ZDz3Fo3w2lMWH4GgHHISw7mBL0/yhAiVAeroIYFv63j/EU9VaHoQ02uLLaqRhblU53pROa3gcDDl/n0LJP0XzMMLShYb7NTs6NEzWZ5U8AO1FHREJLTsgqR1ZIj5Hod8wwn6QunuR7o7WEzPfkc4MVZDZ3TaMVZbbPZOJKgFj2O42tsXBqiv4fhRxd51LvMOhA0X9bSPPjR5CxCQa/s5Js7SSVNU8Zm4J6KsGtHxsihCdPAtDyWCuDyqbLz9YnZ9q3aaMFnpGQICA8dpyF3/cxpUhGPxKKbDo0ltwnBeZGQVAKPO0I9uyjHOX5Z6cK97v34gLO/D62/dZyWvYP4AQB4Yh9w9Q7D9BeWsqxq9OSCaYkHNmokEjTY6gHQGg7GNJ85y7CY8dRvb34LQ7Gs9t6E5rObYaOL95L5eJr6dhdp3R8muFr2jA97QTNGhVA6/0HwBikWiMUwfuPe3Da22laPMDIqm66friH6kX9jK0oURpVBK1CeRQq37gbtWEjHbt9Wh46yNCGxbMPRKMLZC6yMte+gDeuEAf8VlJzkcJaVeJiibFrAWydFtIibrathriS+P8k1qOBzcxFTLLkRUneHTVH/5NTj2JKki5pcCcUTi3dOWwSVKBovXcfEwuXoUKNDqD53x8kiN5Ey9+4+3SG7WlB9j4v8OxF6dv3zFj2dN6HFzIKglLgvMXOn26h++FL6PoH698f/slLOHnpTN+ENKTmioIDL3RovmgN/X92G3veuYp6p0n2W/al44SPbkWAgT++jdFf2Mi+l7WBwPZf6ogaEba+dzEoaNup6ftEJDX96ksYW6IZ/N+3EQBycT9OHRb/4V0c/dX1aZ0VyfdnhjR+zCVCkDibdS5LQ7za5NsSBcs/f4ygq5mdP9VExEwyTaRWFUm09KM1amaYzYyCY7HIWJgvrpaTYA8z20mmfxlWorIRgI2uDjXLNtH3Jd+aRt36QLJs+rXXcui5mq3vW8rqTx0jfHz7XENVoECBZwAKglLgvELwwnUcXF8GZVj2bzW8LQfTjNM53sRzRohAsfofT0CtTtjdyuH3bcZvjUzqNcWKvx9C9h+yG2uHoXdtYLpPkoZWfGkK51iqtnjgJ/rzbgKBeodw+H2bGfzsToJoVzFC/1d3U1+xgMM3bGLZF08wvqaDwz+xhDV/PcSen15ArcckbSTNZclVYxxKg0UlMVhEJEAJ7H1dbySln428jf7PFBRTOiouqNMYkiS4Nj5mNr4kayUxkUWmMVYmJiaxFLzA6n8aY3hdBycvlRkhJTGahjSDX7YKlMc2z2dsuWL5Z46w940LKI1C/39YmXcZOpbLbmj90Q5WP2oJpBw4DSn4AgUKXNAoCEqB8wreeJ3mIyWahxSlrYcIho6CdpCNl1HrSifc6XVLmVzgMMM0oaA2vxXtG2o9HlMDqeVEhVFqqAhOby/1SweZWigYL22j1lPGc+NiXIrWg4bySGBjPTauZXqeRjzD1IBAuWTnchfC512BCYWpBSWm+g21gVYmFzhMzxf8BR2JZSXbT+C0X//dKUX7DhhZY91ayld0bcEGjShoOaQYuQiMmzaoII0tierKiEQBp7H6aWOV2ZiQJGQlbSPX/QYLSHwutb5mmk4YZKtmdLXQvkMTNsH0fKHzcbtf87CfZK10dbXgTTUTbt/FvEfm4Y0HafpuA34cme8CBQpceCgISoFzBlUuI36QF8S6/3G6H3KQWi2JT9Elj50/0YzxTDJXHrzeTawP2lcY1yq8iivsebWH9tPMlhkcxisRrBpg90+UcOp2f8Hue+i5LqmfBlZ87iTmoS2gHfa+upmgKapfk4299IS9ryjbdMKof/te6iZ+i92vKyNZH4bOWBZm0wLLZqFEu5VPKOZ9/j4mfudqfE9wpxU9X0hTZVWpxPj7LkOl8jC5kvOJMmtMKpKA1oxZBlJyErluGjNmtK8Q17rZVKgwnqDj6rsCB17gsei7dRbccZDx31jGwDcPUB/s4cCLmuj5zD2IX8+f610P0xolSFW+1lgKtkCBAs9mFASlwDmBbm5m1+9ewbKvjCP3PJIsn3rV1Ry/xGXRzbOXhI/f3Fd9fB9j1y7i2FqHpX94Hwd/7WqmFtrZXBQs/nad8pFxtr21e4ZraOht1zCxRNA+rPyTrZiJSfSSRWx7Ry+r/uYQ4aG0AJapZyZUM9NgA1bNdvkfPMSRN1/B+AqTZMrYzgDZDFpFos2Rc+NkPzdkv4iCqQHDjg9fhbj2HP02+z1JDApgxZ8+ipmuJv3a99vrbOwNJOqvSjLxKPHJhHEMSWo1SXQ6Mv0pH9cM/vm97L9hHW37Dd3f2sb2317N8lsmUfdvTY4rfkBgQpZ/6CRBvY7ed5Ald7kzyUmBAgUKnAIFQSlwzmBcEK1wFy3k6EtspsvUAoXfIZz4lU30fXMXwZGhZPt594E3JRx+jkJqddrvPUT5RC/Hfu4qat2SEgCB4avKONW85SIsw4lf3sj0AkFcmxEi1RrhxksYXVhm+S1Vjj+nn9AbyBGHlsMB5W/fN4PoHH7lIvwWu6GZrqKisvHxvN/5mKL1UMCBF+drusyQvZ8tDiX+mg16zbiiUNZCMvBDoeloDYwQjk2ACXEXzOfoK5YTNOdjZ2ZVp1XkrSvxQSXOrFEs+fc6Ti1ET/lIrcbgt0bR41OYkVGWfWUKZ8fBWfUcJF4mIVJ7ZhbAK1CgwNlDQVAKnBsYQ/NhhTNZB8+18SVAWIGwJJy8FHp/2AKZat6lCUNluEbzoRZkYS9MVnEn6py8tDQjTGJyoUmtHbElQkOty7qDnKqickyhli7ixEUVpucpuu4ZZ/RFzfgdmWBWBUHFo2+WU6i3K5vmejiXOpMcs/VQQMtDB+HFc6QZR9uLnt0yg0DzYU29UwgrdoPGjKC2LSeSbBYAd8F8gqXzqXXbIFhvXONOwdSClKgpiQJmY1l8lWUs+fNQAqW7t2HGx1P+cv+jSeCyuu1BCupRoECBs4GCoBQ4JzDVKgv+8rZkcuv/870ATL1+A4c3z5auA4eep2k+2EL/X9zO3g9sot6RunQg1dKYYSmI/ndq0P/ntzP0nk04NaH37+5hx03rMGVrPtj2jl4SqdOssWKOYl5LvrCfYO/+/MJYc2RWxgFkrSdxjIlOv2czZbSvWPixezn2C1czckm6PsnimaWAx7GXLme6V9H/Z7ex///bTPeWkPbvb2fbjatt7EtUUFARZfFkiIloSbVNopjZuU6jQIECBc42TlHcvUCBswPZdAWHfnszyrX82Fm1nP0f2IzT2UHrtx9h9d+dAAW7f34BEz+1IbOjzQbZ/4FNLP3nIfruAZklkSen2JrZN57QRcHYcth74zVpIGnjRKwa9jchK/5yB12PqEQ6HUCecyWHfmuzLRcMtBzQrPnz3TjTisPXuex629IZ7cb9bT6kWfOnu3EnMtoj2X5nrBhNQ3Zbb1zTdzes+ZPdrP6TXQw9bx77P7CZAzduRpXL9HzlURZ+d4T9H9jM0n85ils17H7XRTaguLF98sdBEdWQEcQRWvdrVv35TszEBAUKFCjwdKMgKAWednhDo3Q/FtjS9ABjE/Q8GiLVGmrJQkYv6wbAbzX4zRoJAhbcHlI+rm32yqMhk2t6mOrTuUm8fEyz4A6JhMXylhUlYEpQffV6/HbwxhQ9j4WoKEDUnVL03yr03yq07sn/LGpditqr1mNGRnGr+TgT9+gY3Y8HiQ6J3wIT1yzGuBBWBL8ttchkA06VQNAME+uX2KShLEFqIEvdj03SuT1kYv0SjCdM9WmmL1tEOHSUoEmhQuh5LIAwJBwbQ+0/Qs9jIXJoiOZdI3RtMzmtEogDZRuO2ZA67LfC1DVLUK53Ope1QIECBc4oCoJS4GlHsGsPla/fhdPRjvJKhENHaf7ynahKmZG13QytV3jjOkpjBd3RTuuPdlA5YQsJtv1gO0fXuUwsMblJv3JC6PjRnnzqbsZaYDzh4PM19Q5D+SS0/3B3os7qTiqab7mT5lvupGu7n+4kUOs2HHy+izMwn7Ckcsc0+w7ScvsOnO4uxFX4bcLRdS7iCbqucCdnxnbExMnvMBy8XhOWJCFRkBIqFDjdXTjbD9Cyf9JuWxEmFxsOP8fmE7tTQutBofW/tyc1ZsLjJ2i+5U7M+Djh49vp/NbjeOMab1zjTMcBsGoWC5Oyy6N+1DsMR6/2UKWCoBQoUODphxKZw8F+HmNsbIyOjg6u57W4qnh4XojQzc3s/OAVLLtlAu56GJRi3wc34bcbvFHN4v91O4dv2MRUv0nFxqKy5SqMgzBmadionB6JCknVWlWqehp/B9t805Bm4R/Z1Ob6y65h/0vcSKE140KStC0lsOZjB6mu7GPvy0vJwrY9mvmfvIs9H1zPgtsDWh4+xNb3DibHaUwnVnGbWQtLpl+zysSDHaOP3AZKIZvWsuc1zay46X5MtcqsiHXtN1zOjp9ptlomOtaJiQ9IoiSrBNq3a/o+cTtceI+IAgUKnKcIxOf7fJXR0VHa29tPuW0RJFvgnMBUa6z8x+Nw4IgNlBVh2ReOguuAHxCKMPjlQ0hTOdnn0It6GF9qEEeSiduZUiz/55Pse003tXnGKqSSmdgVLL+lytjyJo5dKcmylgOagf86yc6f7cR4Qr1TGPr1zQx8bisoha4rVnzhJAde2o0SWPifJ9j5s130PCy0HK6z59WWlJQf2M3K0QF2/nRbQl4kzJhwJM2+AdA1xcovjHLo+k4mB00+kQZLVpZ806fW5XJkk0rITPm4Zsm/pZWdTZPHkV/fzMKv7kce28PKkfmnLt0uMbmTRGRNJKrVk0kvjknSou8aWh85RFCQkwIFCpwjFASlwDmDafLQXnoLhlt35NYHu/bYD0qhrr4kCYjNphTrUGEe2YL7ks2YcU3TEWFspdB0VKNrMLHEEFYcTMOd7k4J8uh2lFlvFwg4VcG/eDHGVbTvBFPxQIM7LphHtqPMtRhXEZZ1Ys0Ij59AT07RceVVTCxWtqrw+suS40m1Ssc2xfgSMOWoPs2jO/DWr0v60hgOYsoa42asGpnx4sFtiF/HaW/HufpSCI2t9hxVfJ4NyivBlWsQBeNLWzJicSqXtlw6oWk6ar+0PjpEUFTiLVCgwDlEEYNS4JxAV8rsekM7ZvnC/AqlUK6bZPgAqFKJ3a9vZ3KhyaTYKpvOG0EUtBwU5v/TQ+hAseDOaRZ+8who2PtKjxOX5VmAKOxxIkn30qii9+/u5tB1TQRNir4vPcqu17dS7ZEkpkWFiuNrYf9L3CS4FmzKdM//u53mw1DtNex6Q6utlyOWwPR+6m4qx2f2N6dpYhQqtBaMAy90GL4mOs/QbljrFna+sQ2npwuUIhwbY97f3k5w4OATj3VrCzt+poXtv9DM4eskcZVhQAfWqqNriu7HQ3o/eTu9n7ydYPfeJ76IBQoUKHAWUVhQCpwTmKkpVvz+QzlpdoDqq9ZzZJNN2V35qcMEu/YgtRrL/+Ahhn9uLSMXCRjF6r86wOj6AY5fZrdVAqOrYPx319qCeQaQlFw0VgIeXw5Tv3sVy//PDo69ciUnLhN2f3g9K//uEOH+Q4R+nZX/6yG7UxhiTMiyP3qAE2+4golBzeK/fJBgaip/UgIt+zQLP/0IO3/rUsAKp+14z3JWfGaY6cUdHLzeS/qbtZz0325ov/8IW9/Vn1hntK9Y+SdbOfr6NdQ6FIv+5mH2vuty5j28mPI37j79wdbKxtNoMqJ1dowqRxwW/+WDdlndP93ahQUKFChw1lEQlALnDGZycuaykiIs22ly6EX9eBsXoANou+WeNDtHCzJVRftCUBFGf34jtU6oDCt6H6yz/8UeR69uwp2ukFdcI82icYSwrJCpKXRoA0bDChy9vh+3uiDnRmo57ON+7z7GX3k5E4sUfqsw8trL6fr2Npg/j5NXdiMKpvsUaDjxmkswcey2suejqnWcehrx2nvnSTp2tSAKDrywxMhyTVjqZ8m/+xx6Thm/wyAajr9yDVN9CncazPg4Az+cwh0affLqrVkRu/jcNNQ7hBOvX0vP17fMej0KFChQ4FzhjLt4li5dilJqxt+73vUuAK6//voZ6975znee6W4UON+hFO6SQfu3YH6y2BsLqAxrKsc0YyvgxCWK8UUalL1Vla8oH9PQ1029VWNKwrGrIWg1uFNQ2XUcBOpdljA0SuBD3nKhFvWjA+wxhzXTvYrxxZqJwfRvar4HSjO+0CFoEcSF8cUaVSoRdDQl24dNQlgWJgY15RGFO+EjQUhlWIMf1WaO43QPH6eyc5imncdQBqb7DScv0lR2DqOjLGdxhONX2uNVTtgdvb3DKD/AXdTgGnui4c66xTJZTGGL4dg6waxchNPV9aTaLFCgQIGziTNuQbn77rsJM1kMjzzyCC95yUv4qZ/6qWTZ2972Nj7ykY8k35ubm890Nwqc59BNTWz7tUVWsXSfZv7HbFFA7zv3svA7dpvD79tM5ZjQ9Q+3JXNq85BiwV/cxu4PbsZvNzmyMb7cMP7O+YgWFn2zindolK3/w1bRUZKRbo8zZhxh29vnsfTrddq+cN8T9nnBX97G2Js2MrZUs/APbyMA1OEjLLzdrh9+5ybEVfR9PK3EHAIL/2iYAGBlSsSOvm4lI2vidGjbOb/VsPU9A0mBw/jcBv9zEnWbdcPs+pUlNhV7TLP4I08cfwKAsW4xRXQ8iYibTgdvx8+2MP/ONbR+8Y7Ta7NAgQIFzjLOOEHp7e3Nff/DP/xDVqxYwfOf//xkWXNzMwsWLDjThy5woUFg8DshpZEpDr5/MwAL7qzifC8lC6Orofq+zQx87B7ASt0ffP9mlv3LMU5e2c3wukxzGe2x/S9sQgdNKDGJtog7qVj5qYPse+MipvvTOj6i8mYWc92VHHquJc1LvjJsi/FphyO/sYHqPLGCb+/fzJJ/2IW/bD5HNrbQ/9E7Zz1Fp7eXvb+6iqX/tJeQlHT0fXkbXZcuZvdryjNk9Vf8yzS1njKHrnNY9X+PcGLDfCaetxlRELQK8+6Hnu/vITjNYQ5Hx1jzMVszaOqSBex7uRsRtuigBlZ+bhy961BR+K9AgQLnDc5qFk+9Xuczn/kMv/Irv2L1FiJ89rOfZd68eVx22WXceOONTDUGGxZ4xkP8gL77hOYtQzhjVarzDC2HBO94ei/0POrT/YjQetBQf8Faqj0226R9j0H2HsSbTGM6Gl05lePQfCRjXhFbt2d6dR9hGUojmt57QQeK0eUlZNMVyabeyWna9xja9xjUeNqfao+tKqx9bB+qNYJml1rPKUJLa7Vo23wwcHjsOKVth+m917qtmg9puh+OZPeHxymN+CBg9h8iLCmCJntMFUJp0hAcPHT6g21Cgv0HCPYfoHnrUfruhr67rTidO6nouwf0zgOEJ0+efpsFChQocJZxVoNkv/KVrzAyMsJb3vKWZNnP/dzPsWTJEgYGBnjooYf4nd/5HbZu3cott9wyZzu1Wo1aRoRqbGzsbHa7wNMA8eu0//ujhNPT6BVLcaYVPV/bYidJpdCtrVRu3UK5Xgdg7/vXYTyh+Yii4xuPgtYYL8NKFKhA4dRsDZzux2pUDk8wvrSbsAQowZSFfS9zAUP7DkXXv29lZOXFjK4Sqj0tiasmfHQr7Y+CbmvDALpSwdRtYIjyFeUTio5vPGLjTktpPSCnBhLaL7qlBan7hGNjtH/+jsgysQRRoNtbkbqPOTlC+xfu5OTFG2nfE9Jx/xAnLp/dslgegfbP38H44s1o/6nn2gR79tEe6Zvon97IRL+m/XO3F5aTAgUKnHc4qwTlU5/6FK94xSsYGBhIlr397W9PPl9++eX09/fzohe9iJ07d7JixYpZ27n55pu56aabzmZXCzzN0M3N7LzxMpZ/eYLw7odZ+qHdhMZOk05fL9tvsPdC9yPQ+U+3s/h/WReKc9EKtn3wslSwTeK4CujcCr2fe5CdH7yCfS8r0Xykh2Ufuot977+WelfemjK2HCZ++yJW3vwIx197KVP9+f457e3s+N1LEQ3tO2He/70LgEXf82neepRtH7jMNqXBsRyK7n+w26AUe37zChbcUaf07Xty7ZqSsO39a1ACrfsUfX91O8oojmzUDG3oz8nKq8yH2EK08E/uTAoT/rho/dKdtKpCCqlAgQLnJ84aQdm7dy/f+c53TmkZAdiwYQMAO3bsmJOg3Hjjjdxwww3J97GxMQYHB89cZws87TDVGsu/NIbeE8U9ROREnnMlw6ubWPFFayVzTkzYWItoPaGVsxeg83FF5w4rO5/EmkbZMr33CS2Hawy/dT2LvjeFrqYFAA+8pANdh4HvjRJOTDLvhwepD/Zw7B2bmP8vWwmPn8BMTbH8S7YPemya0IQs/9II4yvbGX7+QlZ8cYy9r+qgcgwW3DaCMSHVV1/L+CIHJTD4H5N4u4/k40SUdSkt+8okyg/R49XEctH1GPQ8ZI93fON8pvrjgj3Q9/3DiOfmxumMQASksJ0UKFDg/MRZIyif/vSn6evr41WvetUpt3vggQcA6O/vn3ObcrlMuVyec32BCxAmRO5/NOdacC5exURvyVpH7n0UwE7wSuFcshoOHU22bTmgaT4W4Ez5tO2pMDkg+K0KLltl3SghGFcxulrofkyh/BDlh4SPb6dj+QacuiD322MQhCgj1mUUxUpJEEDUh7iP5sHHCS/ZyPgSRc/9YZS6K6i6pSHigvEUyoDz0A6CBl0R72SVtt1l1D2PIUFg242O1zwcwkPbUWuWIw4409C6FwjDVPK/QIECBZ5FOCsExRjDpz/9ad785jfjZiTLd+7cyec+9zle+cpX0tPTw0MPPcR73/tenve857F27dqz0ZUCFwqUYvdP99J3b0DXP9yRLAPQ5TI7fqGbpV+r4B6fRBQs+vxOxjYtZe+rW1nywds48t7NTC427Pj5NlDC0AYAD1Gw+3VlkDLehGbxTTto/Ze7csc9fv0gk/2agT+9PUca5qri63cYtv9SJ4hQ7xAmB3tY+nsOTV+9m6ZovxlOGKUwDz7OvAdkplprtEB3d7LtLZ2s/pshwu27bKVikSfsT4ECBQo8E3FWCMp3vvMd9u3bx6/8yq/klpdKJb7zne/w0Y9+lMnJSQYHB3nDG97ABz7wgbPRjQIXEkRY9pePMv6Cizh8wyb6/+w2jv6PTTSdMLR94Q5W/tFjmMlpWL4YZWDHu5YjHjjTaaBsxzbF/K/sZPt7V7Doez6VoSm2/2I7CPTeC13//iihCMfftgmnBl2fu5v9v30t8++q0X3fOLs+vClpy52GhX90+6ykoHxcs+SvHwdg8jmrOLLRyu2f/KWNGBd6PnX7jH2O/tommo+GtH6pIR05Om8zXYXOjnT5xrXsf3Eri//oHkZ/6mpq7YreT85st0CBAgWeqTgrBOWlL32pffNrwODgID/4wQ/OxiELXKCQzVdgSg7O9+8jHBmlbcsJSqPtAATNEEzZ4oHjL7gIcaDWrhEt9D5omOh3mOoXJt+4gVonBE2K0edbF8nIihJev4coG0Q7OaApXbeGytfvImhSTPeC+5PrqHcIJ9eUaW13WXCXz+GNLpUTiq5tPpNvuJaO2/fPTOkVkpRcpxqCsgSl+7EJxJlFuhaY99A09U6P6ddeS9PX7s3Fkkxet4aW3aNwLE3zNZ5D0CqgFR1bx21l5QIFChR4FqEI4S9wTjG+pInRZWl8Ufj4dtz/ujf9XgZn0QBHNmiOrdWML7EEoP0Hu+jYE2BKwpFNCr/NUG8XTq7WoIXxFYYTl1uSXBrTBM1wcrULSuGNC6Lh5BoH0TC+zDCy0qH8jbtpHlK0HghpeXyYExc5SEfrjD6LtkUAleviToeURqK4lbsfhjsemvU89Q/vpzJc5eQaF6Wz6dGKofUuk8s7IAwpndQoP8CpBrZdI8i9j6JufeDHHeoCBQoUuKBQFAsscE7R/vlTS6uPrhZGVw0AwuJ/m8Y9Psm2t80DLFGIoQQ6tsO8z9zLrpuuxnhWPl4JLP+bXQSHjyTbdn/6droB5brsvmk9YSb+uu/jt1F/+Xp2vqWfJR++M0l9zh6n3mXY+pvLWPN/SsitDzBw62me7B0PMXAHM2JQYvn98NhxBn/fSuizBxbePXPbAgUKFHi2oCAoBc5bKIG2nZr+7x9j+5t70gwbDfveuoqgCZxpYcU/DrHv9QtQIrbuTKYYHsKMOJLRn9/IZL9GGVjx2WNQ91E1P0kJbrpjGyu2dhJkyYl2OPprG5juk7SwD8C1l3P02jb6PnHnrCnAzrweDrx5DYNf2JNzFU2+YQNBRdHxORuTcvQaF/eizcl5A6gA+j9xD+LXf4xRLFCgQIELEwVBKXBewV22hHBeO3L3w3TuCCiNBsiufSA9OaJR7bV5Mk5V4Q90YNyZcveAjT+5ejHeWD86MHDHQ1R7NEELtO8SzM69SEalGCAcGYWR0Xw7YqgcN3gTUeEcAZmcQk+1UDluZoqnbVyLe/AEMj5O5ZgwfXE/lZYmwm07ASiPBLgVDSJ0PW4ImuJMHftfrVsxvcDGoBQoUKDAsxEFQSnw9EM76JIN+jR1P2d5GF87nxMXuyy8G5q+ehdoB9Xemq2ll6tgHFaEPa+oIJ6haVihmyqJ7D0C4gkHXuQADu6EZtlDzYiCpiGh64v3zSAnqlyGMESCAFUuI/V6JGgmM9xRIcCx47Q/0nB+SrH/xa0suKuE9x8H6PqH2znyPzfTNL+Xzr0HkFoN97v3Jj++9q/cbwXmTGhl9Ws1ZNNa9r28qPJdoECBZy+UzJZuc55jbGyMjo4Orue1uKrIbrjQYJ57FXtfVUGAFf86YYNLY2gH5TiJW0M2X8Gen2jGuMLyW2wMytZ32BgUJeCNa5b+4X0c/LWrmeqXSKBNWPJNn/KRcba9tdu2o+z2yleITbrBqcPy338QkylWeei3N9OxM6T9Px9nx42XsuLzJzEPbXnS56i8EhKGCflSXonguss4+PwKS34/47ZRiv0f2ETfvT7N9+5lx3tXsPL/HSHctQ/luTMIVIECBQpcyAjE5/t8ldHRUdrb20+5bZHFU+BpR2n7IZZ+bZplX5tG7zmCu2ghJ355E7qlxSrMZmIu3J2HWfq1aZZ/uYq78zBgicbibwd0bFUEFWH456+i1iVWAl/B0q/XqTx2ANl/mOW3VHEnFUpA1xRLvz5N+YSi6ahiyTemMFVLAJzeXk788ib67qnRcf8QZmqKpV+bQh08muu7ue5KJt+w4QnPUfx6zjIkfp3y4wdZ/K0JJPAzGwqD3x6n5dEjyOgYS782jQwdw1mznJM/fTXKLYycBQoUeHaiePoVeNoRHBlCDR3FWbEUqVZRrc3UuhTKsaYN5broZYuR/YcIh46ihixJCAGn0wqvlY9Xcfs80FDrUogXGQIFvGNTSHsrqr0Vd3gcZZoBQfsKfeuDtA9uQBxwh8cJo9gR1drMyUuFvv88QnDgoF1224MzqvwGrR61dk3LUzxvjgwB4P7/7d19UFNnvgfw70kgAeQlvCZEAVEUa1V8qzTd3a6OTJV2bd2222rdqX1Z3brara3tqt1rtd2dq7fu9c6267R3Z7d6506nTrtXretauy6+1TZSUVIVKwWk4AsBBCG8BpL87h9ANAZUFEKA72fmDOQ8T5Ln/OY5k9+c8zzPiTcAajUcFy4i4HIdpL4BruZmKF9a2p6grE2APVIB+DA/IhqkmKBQn1AFB6PwFwYkbw+F6+tTiN9U4k4GVNFR+O6XcRj93wAKznm/WQEK54cCEATaVDD+pxllL5vQOFQgAYKCZ3TwGLQiLo/5uuEfHYVyz3gU/EKPlLfK4ep4Zs4tjEfV7D2GqNs6Yk/lP0mGI1iB/t1LOPe0EXE5cQjafXUJfpflDPQWTjMmosGLCQr1CVdTE1L+qwiumlqoRo3A908YMHxzHpw1tXBWVmH0RsBVVd3l+zvGlDiGCM7/mwmtoYLwQgWG7UVXvyNRj8J5QzB6yxXUjtWhalzb/urnTIAAozYVwdnYiMZH01FvVGP024VwVFb19qEDAOI+OQMoKjhFkLy5ANLY6P38HiKiQYwJCvUNETjbb93AVo/oM05Isx3qsaNhjw8Dso57vUWZOg5Vd4W1LV/f8TFqQYuu7XVLhAoN04a3FwD2iLbbIzXjItEUq4JLK2j+yT0IutKWCjROTULQ59UYUlIPSCgapg1HyMEmuOrqrn6+Ka1tfZUuVoi9Xc5rpjE7KyuhHjsazSN07Qfa/scp0O490en6KkREAx0TFOpzzvIKhOyogAtA45hIVI1VIyHLu17VhDBcuVvcC7CJAiguILBeBUeIoDnWhYvTVRClbX0UdYuCwDqgYqoAqrbbPOVTAzD87zY4QjUoydQi5aAWruN5CK9OwtkX4zEmN9wjQbkyJgSKAJE3XvC221RDhkAJurqEbc2EKFRMRdsSK+3DTlR2BSOzAiB2JihENPgwQSH/c7OxIB0rrbZPM078XTasL6WjYZi49yd93gzVYQsA4PzrJrRECgIaVEh6MxvWpemoTxQo1/3uK50M+Ija0jtPEK6cPwE1qe1f2n6/SlTwnFfHNdqIaBBjgkJ+JezLYoSdDvOaPXOtjt90AHCECMqXpaMptj05cSoY+ZENttFhaHzRBFGAhH11qEkNhW0kAHFh6O6LkJCgtttMTc0AAFdZOUZ/EARn5WUAbVc4rM+mIX5vGZyFxYBKjcuLpiH2eB0k5/qV2bpP//l5xJmHQBQF5+ZFwhncflzXDkThCFkiGsSYoJBfcZZXAOUVnZaFXmxFS7gGDcNcCC9WoSUcaAkXqJul7VZPnQohlwSiVaNRr0J9kguiAAEfVyJSACAUEIFoAoGWVjivmSHkam4G8vIBtD2puHWEAWq7QHG2ZwzigtoOKA5Xj+QNjvMX3P/r8k1Xl7pXgPpEQNWiIPS8AE7e3iGiwYkJCvULSkAAtFkWDD0/At89FwXj/52D7d4kXE5TI3ZLDhzLpiKwThD70UkU/dsEuAJdgEuBSgCo1UDut4jMbbsoUZYRB7VdEN3ZFGYATRMSUGbSIPF32VcfGCiCyK3mXplpE/nRsbZVZ9sXdXYsvw9BVQLd/5p5EYWIBi0udU9+T9FqUbJqClyatnEaLo1AZVcgKkDUgKoVkPZUW3G0lUMBgstVGLb5G1xYmoaWCEFAvYJhG8xQabUQkS6XkVcCAqBoNB5L4PfewSm4sMqEuNxWaPYeAwCogoJu2D4iov6qO0vd8woK+T1pdWDooWaIWkFzdCDK04F4sxO2hAA0DhUMPdAC671aqO1A3ImrP+oBdS1wNTTAGQiElCmI/K4FtvnpiDpUCsfFS11/n8MBcTh69Zic0yfDqVVB83kOjF80QnOpBh3f6Gpu7tXvJiLqD5igkP8TF7RFFXBVX4F2WDzK02Mw5GgxRJWMJoMawYWVUE8ehoBGIKiwAlAUuCqrIC2tUA9PhLYWCL3kRNAFGyonxiAyWAtVSAhUsdFwlF5w31rxpabYQDiCVNAAUB2x4Np0KMCghzgccF72zaJxRET+iAkK+T2VVouCpQkYvisaAVUNHmWOIYL8ZUaIygVFgPwXhwIKkLwzGoFlNchfokfqH86hYXICzj0Zg6R1ZjhFoNwzHt/9LBQpb1ZfXereh0I/ye6y7PyCkQi6LIj8n96Z4kxE1B8wQaH+p/2CR+iBs0g90XYPs+SpRATWA8bPLqFgcTwAwFVyEanvOHDx8REIu+jEyD9/D0f71RIlrwijrVFw+GKcSTclfFgEaW294VRrIqKBjgkK9Rs1o0MQ0BTsfu202QCbDQAQazGgNVSNppQYxFgEgdZaOFtb4Cg5j4jv4xF8qcFj3ImrsdE3g2Bvg6P9icdERIMZExTyK0qgBoom0Ou2iwCoHt/1WBHN5znQ3jMeJQ+GYfh/nIDzmoGmQX//mtN1iYj6GSYo5FcaH5qIqrEBGPbvX3mVdawe29mS9AAgOaeReFwFFx+uR0TU76luXsXT4cOHMWfOHBiNRiiKgp07d3qUiwjeeOMNxMfHIzg4GBkZGSgoKPCoU11djQULFiA8PBw6nQ7PP/886uvr7+hAaGAIy7mIxF3VnZbps4GErK6TD/WYFFQunobLvzSh8gUT6n+W3lvNJCKiXtbtBKWhoQFpaWnYvHlzp+Vvv/023nnnHbz//vvIzs7GkCFDMGvWLDRfc8l9wYIFyMvLw759+7B7924cPnwYixcvvv2joAHDceEiXKfPeuwTpwthJUDQFQcUxw1u1qhUcGkU2EYC9kgFrgA+bY+IqL+6o5VkFUXBjh07MHfuXABtV0+MRiNWrFiBV199FQBQW1sLvV6PrVu3Yt68efj2228xduxYHDt2DFOnTgUA7N27Fw8++CAuXLgAo9F40+/lSrKDU/VzJly5W6A4FIz6QyGclZVedZRADYrXTUHi3maojljadva/xZKJiAak7qwk2+0rKDdSXFwMq9WKjIwM976IiAikp6fDbG5b08FsNkOn07mTEwDIyMiASqVCdnbna0PY7XbYbDaPjQan4DIVRm04C+fly52WS2sLRm48g7pELUrWmVCyzgS1Ps7HrSQiojvVo4NkrVYrAECv13vs1+v17jKr1Yq4OM8fjICAAERFRbnrXG/9+vV48803e7Kp1A9Ff2ODKygQzitXbljPWVOLyDwbgq4MAQBIve8XYiMiojvTL2bxrF69Gq+88or7tc1mQ0JCQh+2iHwtwKCHK68IyvXPqVGpERAXA2fVFUhri3u3y3IGWkv7/75rJhER9ZAevcVjMBgAAOXlngtNlZeXu8sMBgMqKio8yh0OB6qrq911rqfVahEeHu6x0eChCgpCwfIRcE5O9SpTR+mQ/2oyVClJfdAyIiLqLT2aoCQnJ8NgMCArK8u9z2azITs7GyaTCQBgMplQU1OD48ePu+vs378fLpcL6emcFkreXHY7Rv25DOpT57zLamox+v1ySPH5PmgZERH1lm7f4qmvr0dhYaH7dXFxMSwWC6KiopCYmIjly5fj97//PUaNGoXk5GSsWbMGRqPRPdPnrrvuwuzZs7Fo0SK8//77aG1txbJlyzBv3rxbmsFDg5AIHOe+77zI4YCzsNi37SEiol7X7QQlJycHM2bMcL/uGBuycOFCbN26Fb/5zW/Q0NCAxYsXo6amBj/84Q+xd+9eBAUFud/z4YcfYtmyZZg5cyZUKhUee+wxvPPOOz1wOETUFSVQAwAeY3WIiPzVHa2D0le4DgpR91UuMUFtB6I+MPd1U4hokOrOOij9YhYPEd05/RdXoDid4JOKiKg/YIJCNEhc/wgBIiJ/1qOzeIiIiIh6AhMUIiIi8jtMUIiIiMjvMEEhIiIiv8MEhYiIiPwOExQiIiLyO0xQiIiIyO8wQSEiIiK/wwSFiIiI/A4TFCIiIvI7TFCIiIjI7zBBISIiIr/DBIWIiIj8DhMUIiIi8jtMUIiIiMjvMEEhIiIiv8MEhYiIiPwOExQiIiLyO0xQiIiIyO8wQSEiIiK/wwSFiIiI/E63E5TDhw9jzpw5MBqNUBQFO3fudJe1trZi5cqVGD9+PIYMGQKj0Yinn34aly5d8viM4cOHQ1EUj23Dhg13fDBEREQ0MHQ7QWloaEBaWho2b97sVdbY2IgTJ05gzZo1OHHiBLZv3478/Hw8/PDDXnXfeustlJWVubcXX3zx9o6AiIiIBpyA7r4hMzMTmZmZnZZFRERg3759Hvv+9Kc/Ydq0aSgtLUViYqJ7f1hYGAwGQ3e/noiIiAaBXh+DUltbC0VRoNPpPPZv2LAB0dHRmDRpEjZu3AiHw9HbTSEiIqJ+ottXULqjubkZK1euxPz58xEeHu7e/+tf/xqTJ09GVFQUvvrqK6xevRplZWXYtGlTp59jt9tht9vdr2trawEADrQC0ptHQERERD3FgVYAgMgt/HjLHQAgO3bs6LSspaVF5syZI5MmTZLa2tobfs5f//pXCQgIkObm5k7L165dK2hLRbhx48aNGzdu/Xw7f/78TXMMpT3RuC2KomDHjh2YO3eux/7W1lY88cQTOHfuHPbv34/o6Ogbfk5eXh7GjRuHs2fPIjU11av8+isoLpcLJSUlmDhxIs6fP+9xdWYws9lsSEhIYEyuwZh4Yjy8MSbeGBNvjIm324mJiKCurg5GoxEq1Y1HmfT4LZ6O5KSgoAAHDhy4aXICABaLBSqVCnFxcZ2Wa7VaaLVaj30dBxYeHs7Och3GxBtj4onx8MaYeGNMvDEm3robk4iIiFuq1+0Epb6+HoWFhe7XxcXFsFgsiIqKQnx8PB5//HGcOHECu3fvhtPphNVqBQBERUVBo9HAbDYjOzsbM2bMQFhYGMxmM15++WX8/Oc/R2RkZHebQ0RERANQtxOUnJwczJgxw/36lVdeAQAsXLgQ69atw65duwAAEydO9HjfgQMHMH36dGi1Wmzbtg3r1q2D3W5HcnIyXn75ZffnEBEREXU7QZk+ffoNR9/ebEjL5MmTcfTo0e5+rRetVou1a9d63foZzBgTb4yJJ8bDG2PijTHxxph46+2Y3NEgWSIiIqLewIcFEhERkd9hgkJERER+hwkKERER+R0mKEREROR3+mWCsnnzZgwfPhxBQUFIT0/H119/3ddN8pl169ZBURSPbcyYMe7y5uZmLF26FNHR0QgNDcVjjz2G8vLyPmxxzzt8+DDmzJkDo9EIRVGwc+dOj3IRwRtvvIH4+HgEBwcjIyMDBQUFHnWqq6uxYMEChIeHQ6fT4fnnn0d9fb0Pj6Jn3SwmzzzzjFe/mT17tkedgRST9evX45577kFYWBji4uIwd+5c5Ofne9S5lXOltLQUDz30EEJCQhAXF4fXXnut3z7Y9FZiMn36dK9+8sILL3jUGUgxee+99zBhwgT3QmMmkwmfffaZu3yw9RHg5jHxaR+56WL4fmbbtm2i0Wjkgw8+kLy8PFm0aJHodDopLy/v66b5xNq1a+Xuu++WsrIy91ZZWekuf+GFFyQhIUGysrIkJydH7r33Xrnvvvv6sMU9b8+ePfLb3/5Wtm/fLoD386A2bNggERERsnPnTvnmm2/k4YcfluTkZGlqanLXmT17tqSlpcnRo0fliy++kJSUFJk/f76Pj6Tn3CwmCxculNmzZ3v0m+rqao86Aykms2bNki1btsjp06fFYrHIgw8+KImJiVJfX++uc7NzxeFwyLhx4yQjI0Nyc3Nlz549EhMTI6tXr+6LQ7pjtxKTH//4x7Jo0SKPfnLts9QGWkx27dol//jHP+S7776T/Px8ef311yUwMFBOnz4tIoOvj4jcPCa+7CP9LkGZNm2aLF261P3a6XSK0WiU9evX92GrfGft2rWSlpbWaVlNTY0EBgbKJ5984t737bffCgAxm80+aqFvXf9j7HK5xGAwyMaNG937ampqRKvVykcffSQiImfOnBEAcuzYMXedzz77TBRFkYsXL/qs7b2lqwTlkUce6fI9Az0mFRUVAkAOHTokIrd2ruzZs0dUKpVYrVZ3nffee0/Cw8PFbrf79gB6wfUxEWn78XnppZe6fM9Aj4mISGRkpPzlL39hH7lGR0xEfNtH+tUtnpaWFhw/fhwZGRnufSqVChkZGTCbzX3YMt8qKCiA0WjEiBEjsGDBApSWlgIAjh8/jtbWVo/4jBkzBomJiYMmPsXFxbBarR4xiIiIQHp6ujsGZrMZOp0OU6dOddfJyMiASqVCdna2z9vsKwcPHkRcXBxSU1OxZMkSVFVVucsGekxqa2sBtD1yA7i1c8VsNmP8+PHQ6/XuOrNmzYLNZkNeXp4PW987ro9Jhw8//BAxMTEYN24cVq9ejcbGRnfZQI6J0+nEtm3b0NDQAJPJxD4C75h08FUf6fGHBfamy5cvw+l0ehw4AOj1epw9e7aPWuVb6enp2Lp1K1JTU1FWVoY333wTP/rRj3D69GlYrVZoNBrodDqP9+j1evczkQa6juPsrI90lFmtVq8HUwYEBCAqKmrAxmn27Nl49NFHkZycjKKiIrz++uvIzMyE2WyGWq0e0DFxuVxYvnw5fvCDH2DcuHEAcEvnitVq7bQfdZT1Z53FBACeeuopJCUlwWg04uTJk1i5ciXy8/Oxfft2AAMzJqdOnYLJZEJzczNCQ0OxY8cOjB07FhaLZdD2ka5iAvi2j/SrBIWAzMxM9/8TJkxAeno6kpKS8PHHHyM4OLgPW0b+bN68ee7/x48fjwkTJmDkyJE4ePAgZs6c2Yct631Lly7F6dOnceTIkb5uit/oKiaLFy92/z9+/HjEx8dj5syZKCoqwsiRI33dTJ9ITU2FxWJBbW0t/va3v2HhwoU4dOhQXzerT3UVk7Fjx/q0j/SrWzwxMTFQq9Veo6jLy8thMBj6qFV9S6fTYfTo0SgsLITBYEBLSwtqamo86gym+HQc5436iMFgQEVFhUe5w+FAdXX1oInTiBEjEBMT434y+UCNybJly7B7924cOHAAw4YNc++/lXPFYDB02o86yvqrrmLSmfT0dADw6CcDLSYajQYpKSmYMmUK1q9fj7S0NPzxj38c1H2kq5h0pjf7SL9KUDQaDaZMmYKsrCz3PpfLhaysLI/7Y4NJfX09ioqKEB8fjylTpiAwMNAjPvn5+SgtLR008UlOTobBYPCIgc1mQ3Z2tjsGJpMJNTU1OH78uLvO/v374XK53CfbQHfhwgVUVVUhPj4ewMCLiYhg2bJl2LFjB/bv34/k5GSP8ls5V0wmE06dOuWRuO3btw/h4eHuy939yc1i0hmLxQIAHv1kIMWkMy6XC3a7fVD2ka50xKQzvdpHbmNAb5/atm2baLVa2bp1q5w5c0YWL14sOp3OY8TwQLZixQo5ePCgFBcXy5dffikZGRkSExMjFRUVItI2LS4xMVH2798vOTk5YjKZxGQy9XGre1ZdXZ3k5uZKbm6uAJBNmzZJbm6ulJSUiEjbNGOdTieffvqpnDx5Uh555JFOpxlPmjRJsrOz5ciRIzJq1Kh+O6VW5MYxqaurk1dffVXMZrMUFxfLv/71L5k8ebKMGjVKmpub3Z8xkGKyZMkSiYiIkIMHD3pMh2xsbHTXudm50jFd8oEHHhCLxSJ79+6V2NjYfjuF9GYxKSwslLfeektycnKkuLhYPv30UxkxYoTcf//97s8YaDFZtWqVHDp0SIqLi+XkyZOyatUqURRF/vnPf4rI4OsjIjeOia/7SL9LUERE3n33XUlMTBSNRiPTpk2To0eP9nWTfObJJ5+U+Ph40Wg0MnToUHnyySelsLDQXd7U1CS/+tWvJDIyUkJCQuSnP/2plJWV9WGLe96BAwcEgNe2cOFCEWmbarxmzRrR6/Wi1Wpl5syZkp+f7/EZVVVVMn/+fAkNDZXw8HB59tlnpa6urg+OpmfcKCaNjY3ywAMPSGxsrAQGBkpSUpIsWrTIK6kfSDHpLBYAZMuWLe46t3KufP/995KZmSnBwcESExMjK1askNbWVh8fTc+4WUxKS0vl/vvvl6ioKNFqtZKSkiKvvfaaxxoXIgMrJs8995wkJSWJRqOR2NhYmTlzpjs5ERl8fUTkxjHxdR9RRES6d82FiIiIqHf1qzEoRERENDgwQSEiIiK/wwSFiIiI/A4TFCIiIvI7TFCIiIjI7zBBISIiIr/DBIWIiIj8DhMUIiIi8jtMUIiIiMjvMEEhIiIiv8MEhYiIiPwOExQiIiLyO/8PzD9xkgeoKW8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "0it [00:03, ?it/s]\n" ] }, { "ename": "KeyError", "evalue": "'masked_frame'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[27], line 6\u001b[0m\n\u001b[1;32m 4\u001b[0m plt\u001b[38;5;241m.\u001b[39mimshow(row[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mradiant_temp\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39msqueeze())\n\u001b[1;32m 5\u001b[0m plt\u001b[38;5;241m.\u001b[39mshow()\n\u001b[0;32m----> 6\u001b[0m plt\u001b[38;5;241m.\u001b[39mimshow(\u001b[43mrow\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmasked_frame\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241m.\u001b[39msqueeze())\n\u001b[1;32m 7\u001b[0m plt\u001b[38;5;241m.\u001b[39mshow()\n\u001b[1;32m 8\u001b[0m plt\u001b[38;5;241m.\u001b[39mimshow(row[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtarget\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39msqueeze())\n", "\u001b[0;31mKeyError\u001b[0m: 'masked_frame'" ] } ], "source": [ "for i, row in tqdm(enumerate(loader)):\n", " if (i % 10000 == 0):\n", " print(row)\n", " plt.imshow(row[\"radiant_temp\"].squeeze())\n", " plt.show()\n", " plt.imshow(row[\"masked_frame\"].squeeze())\n", " plt.show()\n", " plt.imshow(row[\"target\"].squeeze())\n", " plt.show()\n", " continue" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }