|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ """ |
|
|
|
|
|
_DESCRIPTION = """ InToxiCat is a dataset for the detection of abusive language in Catalan. """ |
|
|
|
|
|
_HOMEPAGE = """ https://huggingface.co/datasets/projecte-aina/InToxiCat""" |
|
|
|
|
|
|
|
_URL = "https://huggingface.co/datasets/projecte-aina/InToxicat/resolve/main/" |
|
_FILE_TRAIN = "train.json" |
|
_FILE_DEV = "dev.json" |
|
_FILE_TEST = "test.json" |
|
|
|
|
|
class InToxiCatConfig(datasets.BuilderConfig): |
|
""" Builder config for the InToxiCat dataset """ |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for InToxiCat. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(InToxiCatConfig, self).__init__(**kwargs) |
|
|
|
|
|
class InToxiCat(datasets.GeneratorBasedBuilder): |
|
""" InToxiCat Dataset """ |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
InToxiCatConfig( |
|
name="intoxicat", |
|
version=datasets.Version("1.0.0"), |
|
description="InToxiCat dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"topic": datasets.Value("string"), |
|
"keywords": datasets.Sequence(datasets.Value("string")), |
|
"context_needed": datasets.Value("string"), |
|
"is_abusive": datasets.features.ClassLabel(names=['abusive','not_abusive']), |
|
"abusiveness_agreement": datasets.Value("string"), |
|
"target_type": datasets.Sequence(datasets.features.ClassLabel(names=['INDIVIDUAL','GROUP','OTHERS'])), |
|
"abusive_spans": datasets.Sequence(feature={'text': datasets.Value(dtype='string', id=None), 'index': datasets.Value(dtype='string', id=None)}, length=-1, id=None), |
|
"target_spans": datasets.Sequence(feature={'text': datasets.Value(dtype='string', id=None), 'index': datasets.Value(dtype='string', id=None)}, length=-1, id=None), |
|
"is_implicit": datasets.Value("string") |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_FILE_TRAIN}", |
|
"dev": f"{_FILE_DEV}", |
|
"test": f"{_FILE_TEST}" |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
data = json.load(open(filepath, 'r')) |
|
for id_, example in enumerate(data): |
|
yield id_, { |
|
"id": example["id"], |
|
"context": example["context"], |
|
"sentence": example["sentence"], |
|
"topic": example["topic"], |
|
"keywords": example["key_words"], |
|
"context_needed": example["annotation"]["context_needed"] if example["annotation"]["context_needed"] else None, |
|
"is_abusive": example["annotation"]["is_abusive"] if example["annotation"]["is_abusive"] else None, |
|
"abusiveness_agreement": example["annotation"]["abusiveness_agreement"], |
|
"target_type": example["annotation"]["target_type"] if example["annotation"]["target_type"] else None, |
|
"abusive_spans": { |
|
"text": [text for text, _ in example["annotation"]["abusive_spans"]], |
|
"index": [index for _, index in example["annotation"]["abusive_spans"]] |
|
} if example["annotation"]["abusive_spans"] != [] else None, |
|
"target_spans": { |
|
"text": [text for text, _ in example["annotation"]["target_spans"]], |
|
"index": [index for _, index in example["annotation"]["target_spans"]] |
|
} if example["annotation"]["target_spans"] != [] else None, |
|
"is_implicit": example["annotation"]["is_implicit"] if example["annotation"]["is_implicit"] != "" else None |
|
} |