projectlosangeles commited on
Commit
381dd05
1 Parent(s): 81b102b

Upload 2 files

Browse files
Monster_Music_Transformer.ipynb ADDED
@@ -0,0 +1,964 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "source": [
6
+ "# Monster Music Transformer (ver. 1.0)\n",
7
+ "\n",
8
+ "***\n",
9
+ "\n",
10
+ "Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools\n",
11
+ "\n",
12
+ "***\n",
13
+ "\n",
14
+ "WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/\n",
15
+ "\n",
16
+ "***\n",
17
+ "\n",
18
+ "#### Project Los Angeles\n",
19
+ "\n",
20
+ "#### Tegridy Code 2024\n",
21
+ "\n",
22
+ "***"
23
+ ],
24
+ "metadata": {
25
+ "id": "gpy3qsulqHa5"
26
+ }
27
+ },
28
+ {
29
+ "cell_type": "markdown",
30
+ "source": [
31
+ "# (GPU CHECK)"
32
+ ],
33
+ "metadata": {
34
+ "id": "W_So4w8fqPGL"
35
+ }
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {
41
+ "id": "X3rABEpKCO02",
42
+ "cellView": "form"
43
+ },
44
+ "outputs": [],
45
+ "source": [
46
+ "#@title NVIDIA GPU check\n",
47
+ "!nvidia-smi"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "markdown",
52
+ "source": [
53
+ "# (SETUP ENVIRONMENT)"
54
+ ],
55
+ "metadata": {
56
+ "id": "C0XxnXGFqVyh"
57
+ }
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": null,
62
+ "metadata": {
63
+ "id": "vK40g6V_BTNj",
64
+ "cellView": "form"
65
+ },
66
+ "outputs": [],
67
+ "source": [
68
+ "#@title Install dependencies\n",
69
+ "!git clone --depth 1 https://github.com/asigalov61/Monster-MIDI-Dataset\n",
70
+ "!pip install huggingface_hub\n",
71
+ "!pip install einops\n",
72
+ "!pip install torch-summary\n",
73
+ "!apt install fluidsynth #Pip does not work for some reason. Only apt works"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": null,
79
+ "metadata": {
80
+ "id": "DzCOZU_gBiQV",
81
+ "cellView": "form"
82
+ },
83
+ "outputs": [],
84
+ "source": [
85
+ "#@title Import modules\n",
86
+ "\n",
87
+ "print('=' * 70)\n",
88
+ "print('Loading core Monster Music Transformer modules...')\n",
89
+ "\n",
90
+ "import os\n",
91
+ "import copy\n",
92
+ "import pickle\n",
93
+ "import secrets\n",
94
+ "import statistics\n",
95
+ "from time import time\n",
96
+ "import tqdm\n",
97
+ "\n",
98
+ "print('=' * 70)\n",
99
+ "print('Loading main Monster Music Transformer modules...')\n",
100
+ "import torch\n",
101
+ "\n",
102
+ "%cd /content/Monster-MIDI-Dataset\n",
103
+ "\n",
104
+ "import TMIDIX\n",
105
+ "\n",
106
+ "from midi_to_colab_audio import midi_to_colab_audio\n",
107
+ "\n",
108
+ "from x_transformer_1_27_16 import *\n",
109
+ "\n",
110
+ "import random\n",
111
+ "\n",
112
+ "%cd /content/\n",
113
+ "print('=' * 70)\n",
114
+ "print('Loading aux Monster Music Transformer modules...')\n",
115
+ "\n",
116
+ "import matplotlib.pyplot as plt\n",
117
+ "\n",
118
+ "from torchsummary import summary\n",
119
+ "from sklearn import metrics\n",
120
+ "\n",
121
+ "from IPython.display import Audio, display\n",
122
+ "\n",
123
+ "from huggingface_hub import hf_hub_download\n",
124
+ "\n",
125
+ "from google.colab import files\n",
126
+ "\n",
127
+ "print('=' * 70)\n",
128
+ "print('Done!')\n",
129
+ "print('Enjoy! :)')\n",
130
+ "print('=' * 70)"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "markdown",
135
+ "metadata": {
136
+ "id": "eI3aQtHzqSnp"
137
+ },
138
+ "source": [
139
+ "# (LOAD MODEL)"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "source": [
145
+ "#@title Load Monster Music Transformer Pre-Trained Model\n",
146
+ "\n",
147
+ "#@markdown Choose model\n",
148
+ "\n",
149
+ "select_model_to_load = \"651M-32L-Fast-Large\" # @param [\"651M-32L-Fast-Large\"]\n",
150
+ "\n",
151
+ "#@markdown Model precision option\n",
152
+ "\n",
153
+ "model_precision = \"bfloat16\" # @param [\"bfloat16\", \"float16\"]\n",
154
+ "\n",
155
+ "#@markdown bfloat16 == Half precision/faster speed (if supported, otherwise the model will default to float16)\n",
156
+ "\n",
157
+ "#@markdown float16 == Full precision/fast speed\n",
158
+ "\n",
159
+ "plot_tokens_embeddings = \"None\" # @param [\"None\", \"Start Times\", \"Durations Velocities\", \"Piano Pitches\", \"Drums Pitches\", \"Aux\"]\n",
160
+ "\n",
161
+ "print('=' * 70)\n",
162
+ "print('Loading Monster Music Transformer', select_model_to_load,'Pre-Trained Model...')\n",
163
+ "print('Please wait...')\n",
164
+ "print('=' * 70)\n",
165
+ "\n",
166
+ "full_path_to_models_dir = \"/content/Monster-MIDI-Dataset/\"\n",
167
+ "\n",
168
+ "if select_model_to_load == '651M-32L-Fast-Large':\n",
169
+ "\n",
170
+ " model_checkpoint_file_name = 'Monster_Music_Transformer_Large_Trained_Model_22501_steps_0.3419_loss_0.9121_acc.pth'\n",
171
+ " model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name\n",
172
+ " num_layers = 36\n",
173
+ " if os.path.isfile(model_path):\n",
174
+ " print('Model already exists...')\n",
175
+ "\n",
176
+ " else:\n",
177
+ " hf_hub_download(repo_id='asigalov61/Monster-Music-Transformer',\n",
178
+ " filename=model_checkpoint_file_name,\n",
179
+ " local_dir='/content/Monster-MIDI-Dataset',\n",
180
+ " local_dir_use_symlinks=False)\n",
181
+ "\n",
182
+ "print('=' * 70)\n",
183
+ "print('Instantiating model...')\n",
184
+ "\n",
185
+ "device_type = 'cuda'\n",
186
+ "\n",
187
+ "if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():\n",
188
+ " dtype = 'bfloat16'\n",
189
+ "else:\n",
190
+ " dtype = 'float16'\n",
191
+ "\n",
192
+ "if model_precision == 'float16':\n",
193
+ " dtype = 'float16'\n",
194
+ "\n",
195
+ "ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]\n",
196
+ "ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)\n",
197
+ "\n",
198
+ "SEQ_LEN = 8192\n",
199
+ "\n",
200
+ "# instantiate the model\n",
201
+ "\n",
202
+ "model = TransformerWrapper(\n",
203
+ " num_tokens = 19080,\n",
204
+ " max_seq_len = SEQ_LEN,\n",
205
+ " attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 32, attn_flash=True)\n",
206
+ ")\n",
207
+ "\n",
208
+ "model = AutoregressiveWrapper(model, ignore_index=19079)\n",
209
+ "\n",
210
+ "model.cuda()\n",
211
+ "print('=' * 70)\n",
212
+ "\n",
213
+ "print('Loading model checkpoint...')\n",
214
+ "\n",
215
+ "model.load_state_dict(torch.load(model_path))\n",
216
+ "print('=' * 70)\n",
217
+ "\n",
218
+ "model.eval()\n",
219
+ "\n",
220
+ "print('Done!')\n",
221
+ "print('=' * 70)\n",
222
+ "\n",
223
+ "print('Model will use', dtype, 'precision...')\n",
224
+ "print('=' * 70)\n",
225
+ "\n",
226
+ "# Model stats\n",
227
+ "print('Model summary...')\n",
228
+ "summary(model)\n",
229
+ "\n",
230
+ "# Plot Token Embeddings\n",
231
+ "if plot_tokens_embeddings != 'None':\n",
232
+ " tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()\n",
233
+ "\n",
234
+ "if plot_tokens_embeddings == 'Start Times':\n",
235
+ " tok_range = [0, 256]\n",
236
+ "\n",
237
+ "elif plot_tokens_embeddings == 'Durations Velocities':\n",
238
+ " tok_range = [256, 2304]\n",
239
+ "\n",
240
+ "elif plot_tokens_embeddings == 'Piano Pitches':\n",
241
+ " tok_range = [2304, 2304+128]\n",
242
+ "\n",
243
+ "elif plot_tokens_embeddings == 'Drums Pitches':\n",
244
+ " tok_range = [18945-128, 18945]\n",
245
+ "\n",
246
+ "elif plot_tokens_embeddings == 'Aux':\n",
247
+ " tok_range = [18945, 19079]\n",
248
+ "\n",
249
+ "if plot_tokens_embeddings != 'None':\n",
250
+ "\n",
251
+ " tok_emb1 = []\n",
252
+ "\n",
253
+ " for t in tok_emb[tok_range[0]:tok_range[1]]:\n",
254
+ " tok_emb1.append(t)\n",
255
+ "\n",
256
+ " cos_sim = metrics.pairwise_distances(\n",
257
+ " tok_emb1, metric='cosine'\n",
258
+ " )\n",
259
+ " plt.figure(figsize=(7, 7))\n",
260
+ " plt.imshow(cos_sim, cmap=\"inferno\", interpolation=\"nearest\")\n",
261
+ " im_ratio = cos_sim.shape[0] / cos_sim.shape[1]\n",
262
+ " plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)\n",
263
+ " plt.xlabel(\"Position\")\n",
264
+ " plt.ylabel(\"Position\")\n",
265
+ " plt.tight_layout()\n",
266
+ " plt.plot()\n",
267
+ " plt.savefig(\"/content/Monster-Music-Transformer-Tokens-Embeddings-Plot.png\", bbox_inches=\"tight\")"
268
+ ],
269
+ "metadata": {
270
+ "id": "V4s_G8yUL0cH",
271
+ "cellView": "form"
272
+ },
273
+ "execution_count": null,
274
+ "outputs": []
275
+ },
276
+ {
277
+ "cell_type": "markdown",
278
+ "source": [
279
+ "# (GENERATE)"
280
+ ],
281
+ "metadata": {
282
+ "id": "7xNyANjZsCOi"
283
+ }
284
+ },
285
+ {
286
+ "cell_type": "markdown",
287
+ "source": [
288
+ "# (IMPROV)"
289
+ ],
290
+ "metadata": {
291
+ "id": "BxepTeHVmmKO"
292
+ }
293
+ },
294
+ {
295
+ "cell_type": "code",
296
+ "source": [
297
+ "#@title Standard Improv Generator\n",
298
+ "\n",
299
+ "#@markdown Improv type\n",
300
+ "\n",
301
+ "improv_type = \"Random Freestyle\" # @param [\"Random Freestyle\", \"Freestyle without Drums\", \"Freestyle with Drums\", \"Custom\"]\n",
302
+ "\n",
303
+ "#@markdown Custom Improv settings\n",
304
+ "\n",
305
+ "first_note_MIDI_patch_number = 0 # @param {type:\"slider\", min:0, max:128, step:1}\n",
306
+ "add_drums = False #@param {type:\"boolean\"}\n",
307
+ "\n",
308
+ "#@markdown Generation settings\n",
309
+ "\n",
310
+ "number_of_tokens_tp_generate = 546 # @param {type:\"slider\", min:30, max:8190, step:3}\n",
311
+ "number_of_batches_to_generate = 4 #@param {type:\"slider\", min:1, max:16, step:1}\n",
312
+ "temperature = 0.9 # @param {type:\"slider\", min:0.1, max:1, step:0.05}\n",
313
+ "\n",
314
+ "#@markdown Other settings\n",
315
+ "\n",
316
+ "render_MIDI_to_audio = True # @param {type:\"boolean\"}\n",
317
+ "\n",
318
+ "print('=' * 70)\n",
319
+ "print('Monster Music Transformer Standard Improv Model Generator')\n",
320
+ "print('=' * 70)\n",
321
+ "\n",
322
+ "if improv_type == 'Random Freestyle':\n",
323
+ "\n",
324
+ " outy = [19077]\n",
325
+ "\n",
326
+ "if improv_type == 'Freestyle without Drums':\n",
327
+ "\n",
328
+ " outy = [19077, 18946]\n",
329
+ "\n",
330
+ "if improv_type == 'Freestyle with Drums':\n",
331
+ "\n",
332
+ " outy = [19077, 18947]\n",
333
+ "\n",
334
+ "if improv_type == 'Custom':\n",
335
+ "\n",
336
+ " if add_drums:\n",
337
+ " drumsp = 18947 # Yes\n",
338
+ " else:\n",
339
+ " drumsp = 18946 # No\n",
340
+ "\n",
341
+ " outy = [19077, drumsp, 18948+first_note_MIDI_patch_number]\n",
342
+ "\n",
343
+ "print('Selected Improv sequence:')\n",
344
+ "print(outy)\n",
345
+ "print('=' * 70)\n",
346
+ "\n",
347
+ "torch.cuda.empty_cache()\n",
348
+ "\n",
349
+ "inp = [outy] * number_of_batches_to_generate\n",
350
+ "\n",
351
+ "inp = torch.LongTensor(inp).cuda()\n",
352
+ "\n",
353
+ "with ctx:\n",
354
+ " out = model.generate(inp,\n",
355
+ " number_of_tokens_tp_generate,\n",
356
+ " temperature=temperature,\n",
357
+ " return_prime=True,\n",
358
+ " verbose=True)\n",
359
+ "\n",
360
+ "out0 = out.tolist()\n",
361
+ "\n",
362
+ "print('=' * 70)\n",
363
+ "print('Done!')\n",
364
+ "print('=' * 70)\n",
365
+ "\n",
366
+ "torch.cuda.empty_cache()\n",
367
+ "\n",
368
+ "#======================================================================\n",
369
+ "\n",
370
+ "print('Rendering results...')\n",
371
+ "\n",
372
+ "for i in range(number_of_batches_to_generate):\n",
373
+ "\n",
374
+ " print('=' * 70)\n",
375
+ " print('Batch #', i)\n",
376
+ " print('=' * 70)\n",
377
+ "\n",
378
+ " out1 = out0[i]\n",
379
+ "\n",
380
+ " print('Sample INTs', out1[:12])\n",
381
+ " print('=' * 70)\n",
382
+ "\n",
383
+ " if len(out1) != 0:\n",
384
+ "\n",
385
+ " song = out1\n",
386
+ " song_f = []\n",
387
+ "\n",
388
+ " time = 0\n",
389
+ " dur = 0\n",
390
+ " vel = 90\n",
391
+ " pitch = 0\n",
392
+ " channel = 0\n",
393
+ "\n",
394
+ " patches = [-1] * 16\n",
395
+ "\n",
396
+ " channels = [0] * 16\n",
397
+ " channels[9] = 1\n",
398
+ "\n",
399
+ " for ss in song:\n",
400
+ "\n",
401
+ " if 0 <= ss < 256:\n",
402
+ "\n",
403
+ " time += ss * 16\n",
404
+ "\n",
405
+ " if 256 <= ss < 2304:\n",
406
+ "\n",
407
+ " dur = ((ss-256) // 8) * 16\n",
408
+ " vel = (((ss-256) % 8)+1) * 15\n",
409
+ "\n",
410
+ " if 2304 <= ss < 18945:\n",
411
+ "\n",
412
+ " patch = (ss-2304) // 129\n",
413
+ "\n",
414
+ " if patch < 128:\n",
415
+ "\n",
416
+ " if patch not in patches:\n",
417
+ " if 0 in channels:\n",
418
+ " cha = channels.index(0)\n",
419
+ " channels[cha] = 1\n",
420
+ " else:\n",
421
+ " cha = 15\n",
422
+ "\n",
423
+ " patches[cha] = patch\n",
424
+ " channel = patches.index(patch)\n",
425
+ " else:\n",
426
+ " channel = patches.index(patch)\n",
427
+ "\n",
428
+ " if patch == 128:\n",
429
+ " channel = 9\n",
430
+ "\n",
431
+ " pitch = (ss-2304) % 129\n",
432
+ "\n",
433
+ " song_f.append(['note', time, dur, channel, pitch, vel, patch ])\n",
434
+ "\n",
435
+ " patches = [0 if x==-1 else x for x in patches]\n",
436
+ "\n",
437
+ " data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,\n",
438
+ " output_signature = 'Monster Music Transformer',\n",
439
+ " output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),\n",
440
+ " track_name='Project Los Angeles',\n",
441
+ " list_of_MIDI_patches=patches\n",
442
+ " )\n",
443
+ "\n",
444
+ "\n",
445
+ " print('=' * 70)\n",
446
+ " print('Displaying resulting composition...')\n",
447
+ " print('=' * 70)\n",
448
+ "\n",
449
+ " fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)\n",
450
+ "\n",
451
+ " if render_MIDI_to_audio:\n",
452
+ " midi_audio = midi_to_colab_audio(fname + '.mid')\n",
453
+ " display(Audio(midi_audio, rate=16000, normalize=False))\n",
454
+ "\n",
455
+ " TMIDIX.plot_ms_SONG(song_f, plot_title=fname)"
456
+ ],
457
+ "metadata": {
458
+ "cellView": "form",
459
+ "id": "Jwxz-eaF0K1y"
460
+ },
461
+ "execution_count": null,
462
+ "outputs": []
463
+ },
464
+ {
465
+ "cell_type": "markdown",
466
+ "source": [
467
+ "# (CUSTOM MIDI)"
468
+ ],
469
+ "metadata": {
470
+ "id": "Gt03VtO6uKkb"
471
+ }
472
+ },
473
+ {
474
+ "cell_type": "code",
475
+ "execution_count": null,
476
+ "metadata": {
477
+ "id": "4QXbFLsKqSnt",
478
+ "cellView": "form"
479
+ },
480
+ "outputs": [],
481
+ "source": [
482
+ "#@title Load Seed MIDI\n",
483
+ "\n",
484
+ "#@markdown Press play button to to upload your own seed MIDI or to load one of the provided sample seed MIDIs from the dropdown list below\n",
485
+ "\n",
486
+ "select_seed_MIDI = \"Upload your own custom MIDI\" # @param [\"Upload your own custom MIDI\", \"Monster-Music-Transformer-Piano-Seed-1\", \"Monster-Music-Transformer-Piano-Seed-2\", \"Monster-Music-Transformer-Piano-Seed-3\", \"Monster-Music-Transformer-Piano-Seed-4\", \"Monster-Music-Transformer-Piano-Seed-5\", \"Monster-Music-Transformer-Piano-Seed-6\", \"Monster-Music-Transformer-MI-Seed-1\", \"Monster-Music-Transformer-MI-Seed-2\", \"Monster-Music-Transformer-MI-Seed-3\", \"Monster-Music-Transformer-MI-Seed-4\", \"Monster-Music-Transformer-MI-Seed-5\", \"Monster-Music-Transformer-MI-Seed-6\"]\n",
487
+ "render_MIDI_to_audio = False # @param {type:\"boolean\"}\n",
488
+ "\n",
489
+ "print('=' * 70)\n",
490
+ "print('Monster Music Transformer Seed MIDI Loader')\n",
491
+ "print('=' * 70)\n",
492
+ "\n",
493
+ "f = ''\n",
494
+ "\n",
495
+ "if select_seed_MIDI != \"Upload your own custom MIDI\":\n",
496
+ " print('Loading seed MIDI...')\n",
497
+ " f = '/content/Monster-MIDI-Dataset/Seeds/'+select_seed_MIDI+'.mid'\n",
498
+ "\n",
499
+ "else:\n",
500
+ " print('Upload your own custom MIDI...')\n",
501
+ " print('=' * 70)\n",
502
+ " uploaded_MIDI = files.upload()\n",
503
+ " if list(uploaded_MIDI.keys()):\n",
504
+ " f = list(uploaded_MIDI.keys())[0]\n",
505
+ "\n",
506
+ "if f != '':\n",
507
+ "\n",
508
+ " print('=' * 70)\n",
509
+ " print('File:', f)\n",
510
+ " print('=' * 70)\n",
511
+ "\n",
512
+ " #=======================================================\n",
513
+ " # START PROCESSING\n",
514
+ "\n",
515
+ " # Convering MIDI to ms score with MIDI.py module\n",
516
+ " score = TMIDIX.midi2single_track_ms_score(open(f, 'rb').read(), recalculate_channels=False)\n",
517
+ "\n",
518
+ " # INSTRUMENTS CONVERSION CYCLE\n",
519
+ " events_matrix = []\n",
520
+ " itrack = 1\n",
521
+ " patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n",
522
+ "\n",
523
+ " while itrack < len(score):\n",
524
+ " for event in score[itrack]:\n",
525
+ " if event[0] == 'note' or event[0] == 'patch_change':\n",
526
+ " events_matrix.append(event)\n",
527
+ " itrack += 1\n",
528
+ "\n",
529
+ " events_matrix.sort(key=lambda x: x[1])\n",
530
+ "\n",
531
+ " events_matrix1 = []\n",
532
+ "\n",
533
+ " for event in events_matrix:\n",
534
+ " if event[0] == 'patch_change':\n",
535
+ " patches[event[2]] = event[3]\n",
536
+ "\n",
537
+ " if event[0] == 'note':\n",
538
+ " event.extend([patches[event[3]]])\n",
539
+ "\n",
540
+ " if events_matrix1:\n",
541
+ " if (event[1] == events_matrix1[-1][1]):\n",
542
+ " if ([event[3], event[4]] != events_matrix1[-1][3:5]):\n",
543
+ " events_matrix1.append(event)\n",
544
+ " else:\n",
545
+ " events_matrix1.append(event)\n",
546
+ "\n",
547
+ " else:\n",
548
+ " events_matrix1.append(event)\n",
549
+ "\n",
550
+ " if len(events_matrix1) > 0:\n",
551
+ " if min([e[1] for e in events_matrix1]) >= 0 and min([e[2] for e in events_matrix1]) >= 0:\n",
552
+ "\n",
553
+ " #=======================================================\n",
554
+ " # PRE-PROCESSING\n",
555
+ "\n",
556
+ " # checking number of instruments in a composition\n",
557
+ " instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9]))\n",
558
+ " instruments_list = list(set([y[3] for y in events_matrix1]))\n",
559
+ "\n",
560
+ " if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0:\n",
561
+ "\n",
562
+ " #======================================\n",
563
+ "\n",
564
+ " events_matrix2 = []\n",
565
+ "\n",
566
+ " # Recalculating timings\n",
567
+ " for e in events_matrix1:\n",
568
+ "\n",
569
+ " # Original timings\n",
570
+ " e[1] = int(e[1] / 16)\n",
571
+ " e[2] = int(e[2] / 16)\n",
572
+ "\n",
573
+ " #===================================\n",
574
+ " # ORIGINAL COMPOSITION\n",
575
+ " #===================================\n",
576
+ "\n",
577
+ " # Sorting by patch, pitch, then by start-time\n",
578
+ "\n",
579
+ " events_matrix1.sort(key=lambda x: x[6])\n",
580
+ " events_matrix1.sort(key=lambda x: x[4], reverse=True)\n",
581
+ " events_matrix1.sort(key=lambda x: x[1])\n",
582
+ "\n",
583
+ " #=======================================================\n",
584
+ " # FINAL PROCESSING\n",
585
+ "\n",
586
+ " melody_chords = []\n",
587
+ " melody_chords2 = []\n",
588
+ "\n",
589
+ " # Break between compositions / Intro seq\n",
590
+ "\n",
591
+ " if 9 in instruments_list:\n",
592
+ " drums_present = 18947 # Yes\n",
593
+ " else:\n",
594
+ " drums_present = 18946 # No\n",
595
+ "\n",
596
+ " if events_matrix1[0][3] != 9:\n",
597
+ " pat = events_matrix1[0][6]\n",
598
+ " else:\n",
599
+ " pat = 128\n",
600
+ "\n",
601
+ " melody_chords.extend([19077, drums_present, 18948+pat, 0]) # Intro seq\n",
602
+ "\n",
603
+ " #=======================================================\n",
604
+ " # MAIN PROCESSING CYCLE\n",
605
+ " #=======================================================\n",
606
+ "\n",
607
+ " abs_time = 0\n",
608
+ "\n",
609
+ " pbar_time = 0\n",
610
+ "\n",
611
+ " pe = events_matrix1[0]\n",
612
+ "\n",
613
+ " chords_counter = 1\n",
614
+ "\n",
615
+ " comp_chords_len = len(list(set([y[1] for y in events_matrix1])))\n",
616
+ "\n",
617
+ " for e in events_matrix1:\n",
618
+ "\n",
619
+ " #=======================================================\n",
620
+ " # Timings...\n",
621
+ "\n",
622
+ " # Cliping all values...\n",
623
+ " delta_time = max(0, min(255, e[1]-pe[1]))\n",
624
+ "\n",
625
+ " # Durations and channels\n",
626
+ "\n",
627
+ " dur = max(0, min(255, e[2]))\n",
628
+ " cha = max(0, min(15, e[3]))\n",
629
+ "\n",
630
+ " # Patches\n",
631
+ " if cha == 9: # Drums patch will be == 128\n",
632
+ " pat = 128\n",
633
+ "\n",
634
+ " else:\n",
635
+ " pat = e[6]\n",
636
+ "\n",
637
+ " # Pitches\n",
638
+ "\n",
639
+ " ptc = max(1, min(127, e[4]))\n",
640
+ "\n",
641
+ " # Velocities\n",
642
+ "\n",
643
+ " # Calculating octo-velocity\n",
644
+ " vel = max(8, min(127, e[5]))\n",
645
+ " velocity = round(vel / 15)-1\n",
646
+ "\n",
647
+ " #=======================================================\n",
648
+ " # Outro seq\n",
649
+ "\n",
650
+ " # if ((comp_chords_len - chords_counter) == 50) and (delta_time != 0):\n",
651
+ " # out_t = 18946+delta_time\n",
652
+ " # out_p = 19202+ptc\n",
653
+ " # melody_chords.extend([18945, out_t, out_p]) # outro seq\n",
654
+ "\n",
655
+ "\n",
656
+ " # if delta_time != 0:\n",
657
+ " # chords_counter += 1\n",
658
+ "\n",
659
+ " #=======================================================\n",
660
+ " # FINAL NOTE SEQ\n",
661
+ "\n",
662
+ " # Writing final note asynchronously\n",
663
+ "\n",
664
+ " dur_vel = (8 * dur) + velocity\n",
665
+ " pat_ptc = (129 * pat) + ptc\n",
666
+ "\n",
667
+ " if delta_time != 0:\n",
668
+ " melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])\n",
669
+ " else:\n",
670
+ " melody_chords.extend([dur_vel+256, pat_ptc+2304])\n",
671
+ " melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])\n",
672
+ "\n",
673
+ " pe = e\n",
674
+ "\n",
675
+ " #=======================================================\n",
676
+ "\n",
677
+ " # melody_chords.extend([19462, 19462, 19462]) # EOS\n",
678
+ "\n",
679
+ " #=======================================================\n",
680
+ "\n",
681
+ " # TOTAL DICTIONARY SIZE 19462+1=19463\n",
682
+ " #=======================================================\n",
683
+ "\n",
684
+ " #=======================================================\n",
685
+ "\n",
686
+ " song = melody_chords\n",
687
+ "\n",
688
+ " song_f = []\n",
689
+ "\n",
690
+ " time = 0\n",
691
+ " dur = 0\n",
692
+ " vel = 90\n",
693
+ " pitch = 0\n",
694
+ " channel = 0\n",
695
+ "\n",
696
+ " patches = [-1] * 16\n",
697
+ "\n",
698
+ " channels = [0] * 16\n",
699
+ " channels[9] = 1\n",
700
+ "\n",
701
+ " for ss in song:\n",
702
+ "\n",
703
+ " if 0 <= ss < 256:\n",
704
+ "\n",
705
+ " time += ss * 16\n",
706
+ "\n",
707
+ " if 256 <= ss < 2304:\n",
708
+ "\n",
709
+ " dur = ((ss-256) // 8) * 16\n",
710
+ " vel = (((ss-256) % 8)+1) * 15\n",
711
+ "\n",
712
+ " if 2304 <= ss < 18945:\n",
713
+ "\n",
714
+ " patch = (ss-2304) // 129\n",
715
+ "\n",
716
+ " if patch < 128:\n",
717
+ "\n",
718
+ " if patch not in patches:\n",
719
+ " if 0 in channels:\n",
720
+ " cha = channels.index(0)\n",
721
+ " channels[cha] = 1\n",
722
+ " else:\n",
723
+ " cha = 15\n",
724
+ "\n",
725
+ " patches[cha] = patch\n",
726
+ " channel = patches.index(patch)\n",
727
+ " else:\n",
728
+ " channel = patches.index(patch)\n",
729
+ "\n",
730
+ " if patch == 128:\n",
731
+ " channel = 9\n",
732
+ "\n",
733
+ " pitch = (ss-2304) % 129\n",
734
+ "\n",
735
+ " song_f.append(['note', time, dur, channel, pitch, vel, patch ])\n",
736
+ "\n",
737
+ " patches = [0 if x==-1 else x for x in patches]\n",
738
+ "\n",
739
+ " detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,\n",
740
+ " output_signature = 'Monster Music Transformer',\n",
741
+ " output_file_name = '/content/Monster-Music-Transformer-Seed-Composition',\n",
742
+ " track_name='Project Los Angeles',\n",
743
+ " list_of_MIDI_patches=patches\n",
744
+ " )\n",
745
+ "\n",
746
+ " #=======================================================\n",
747
+ "\n",
748
+ " print('=' * 70)\n",
749
+ " print('Composition stats:')\n",
750
+ " print('Composition has', len(melody_chords2), 'notes')\n",
751
+ " print('Composition has', len(melody_chords), 'tokens')\n",
752
+ " print('Composition MIDI patches:', sorted(list(set([((y-2304) // 129) for y in melody_chords if 2304 <= y < 18945]))))\n",
753
+ " print('=' * 70)\n",
754
+ "\n",
755
+ " print('Displaying resulting composition...')\n",
756
+ " print('=' * 70)\n",
757
+ "\n",
758
+ " fname = '/content/Monster-Music-Transformer-Seed-Composition'\n",
759
+ "\n",
760
+ " if render_MIDI_to_audio:\n",
761
+ " midi_audio = midi_to_colab_audio(fname + '.mid')\n",
762
+ " display(Audio(midi_audio, rate=16000, normalize=False))\n",
763
+ "\n",
764
+ " TMIDIX.plot_ms_SONG(song_f, plot_title=fname)\n",
765
+ "\n",
766
+ "else:\n",
767
+ " print('=' * 70)"
768
+ ]
769
+ },
770
+ {
771
+ "cell_type": "markdown",
772
+ "source": [
773
+ "# (CONTINUATION)"
774
+ ],
775
+ "metadata": {
776
+ "id": "fmm3KjOtoVp9"
777
+ }
778
+ },
779
+ {
780
+ "cell_type": "code",
781
+ "execution_count": null,
782
+ "metadata": {
783
+ "id": "dkvXYwR_qSnx",
784
+ "cellView": "form"
785
+ },
786
+ "outputs": [],
787
+ "source": [
788
+ "#@title Standard Continuation\n",
789
+ "\n",
790
+ "#@markdown Generation settings\n",
791
+ "\n",
792
+ "try_to_generate_outro = False #@param {type:\"boolean\"}\n",
793
+ "number_of_prime_tokens = 7191 # @param {type:\"slider\", min:3, max:8190, step:3}\n",
794
+ "number_of_tokens_to_generate = 504 # @param {type:\"slider\", min:30, max:8190, step:3}\n",
795
+ "number_of_batches_to_generate = 4 #@param {type:\"slider\", min:1, max:16, step:1}\n",
796
+ "temperature = 0.9 # @param {type:\"slider\", min:0.1, max:1, step:0.05}\n",
797
+ "\n",
798
+ "#@markdown Other settings\n",
799
+ "include_prime_tokens_in_generated_output = False #@param {type:\"boolean\"}\n",
800
+ "allow_model_to_stop_generation_if_needed = False #@param {type:\"boolean\"}\n",
801
+ "render_MIDI_to_audio = True # @param {type:\"boolean\"}\n",
802
+ "\n",
803
+ "print('=' * 70)\n",
804
+ "print('Monster Music Transformer Standard Continuation Model Generator')\n",
805
+ "print('=' * 70)\n",
806
+ "\n",
807
+ "if allow_model_to_stop_generation_if_needed:\n",
808
+ " min_stop_token = 19078\n",
809
+ "else:\n",
810
+ " min_stop_token = None\n",
811
+ "\n",
812
+ "outy = melody_chords[:number_of_prime_tokens]\n",
813
+ "\n",
814
+ "if try_to_generate_outro:\n",
815
+ " outy.extend([18945])\n",
816
+ "\n",
817
+ "torch.cuda.empty_cache()\n",
818
+ "\n",
819
+ "inp = [outy] * number_of_batches_to_generate\n",
820
+ "\n",
821
+ "inp = torch.LongTensor(inp).cuda()\n",
822
+ "\n",
823
+ "with ctx:\n",
824
+ " out = model.generate(inp,\n",
825
+ " number_of_tokens_to_generate,\n",
826
+ " temperature=temperature,\n",
827
+ " return_prime=include_prime_tokens_in_generated_output,\n",
828
+ " eos_token=min_stop_token,\n",
829
+ " verbose=True)\n",
830
+ "\n",
831
+ "out0 = out.tolist()\n",
832
+ "\n",
833
+ "torch.cuda.empty_cache()\n",
834
+ "\n",
835
+ "print('=' * 70)\n",
836
+ "print('Done!')\n",
837
+ "print('=' * 70)\n",
838
+ "\n",
839
+ "#======================================================================\n",
840
+ "print('Rendering results...')\n",
841
+ "\n",
842
+ "for i in range(number_of_batches_to_generate):\n",
843
+ "\n",
844
+ " print('=' * 70)\n",
845
+ " print('Batch #', i)\n",
846
+ " print('=' * 70)\n",
847
+ "\n",
848
+ " out1 = out0[i]\n",
849
+ "\n",
850
+ " print('Sample INTs', out1[:12])\n",
851
+ " print('=' * 70)\n",
852
+ "\n",
853
+ " if len(out) != 0:\n",
854
+ "\n",
855
+ " song = out1\n",
856
+ " song_f = []\n",
857
+ "\n",
858
+ " time = 0\n",
859
+ " dur = 0\n",
860
+ " vel = 90\n",
861
+ " pitch = 0\n",
862
+ " channel = 0\n",
863
+ "\n",
864
+ " patches = [-1] * 16\n",
865
+ "\n",
866
+ " channels = [0] * 16\n",
867
+ " channels[9] = 1\n",
868
+ "\n",
869
+ " for ss in song:\n",
870
+ "\n",
871
+ " if 0 <= ss < 256:\n",
872
+ "\n",
873
+ " time += ss * 16\n",
874
+ "\n",
875
+ " if 256 <= ss < 2304:\n",
876
+ "\n",
877
+ " dur = ((ss-256) // 8) * 16\n",
878
+ " vel = (((ss-256) % 8)+1) * 15\n",
879
+ "\n",
880
+ " if 2304 <= ss < 18945:\n",
881
+ "\n",
882
+ " patch = (ss-2304) // 129\n",
883
+ "\n",
884
+ " if patch < 128:\n",
885
+ "\n",
886
+ " if patch not in patches:\n",
887
+ " if 0 in channels:\n",
888
+ " cha = channels.index(0)\n",
889
+ " channels[cha] = 1\n",
890
+ " else:\n",
891
+ " cha = 15\n",
892
+ "\n",
893
+ " patches[cha] = patch\n",
894
+ " channel = patches.index(patch)\n",
895
+ " else:\n",
896
+ " channel = patches.index(patch)\n",
897
+ "\n",
898
+ " if patch == 128:\n",
899
+ " channel = 9\n",
900
+ "\n",
901
+ " pitch = (ss-2304) % 129\n",
902
+ "\n",
903
+ " song_f.append(['note', time, dur, channel, pitch, vel, patch ])\n",
904
+ "\n",
905
+ " patches = [0 if x==-1 else x for x in patches]\n",
906
+ "\n",
907
+ " detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,\n",
908
+ " output_signature = 'Monster Music Transformer',\n",
909
+ " output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),\n",
910
+ " track_name='Project Los Angeles',\n",
911
+ " list_of_MIDI_patches=patches\n",
912
+ " )\n",
913
+ " print('=' * 70)\n",
914
+ " print('Displaying resulting composition...')\n",
915
+ " print('=' * 70)\n",
916
+ "\n",
917
+ " fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)\n",
918
+ "\n",
919
+ " if render_MIDI_to_audio:\n",
920
+ " midi_audio = midi_to_colab_audio(fname + '.mid')\n",
921
+ " display(Audio(midi_audio, rate=16000, normalize=False))\n",
922
+ "\n",
923
+ " TMIDIX.plot_ms_SONG(song_f, plot_title=fname)"
924
+ ]
925
+ },
926
+ {
927
+ "cell_type": "markdown",
928
+ "source": [
929
+ "# Congrats! You did it! :)"
930
+ ],
931
+ "metadata": {
932
+ "id": "eoWDEy6CwDr6"
933
+ }
934
+ }
935
+ ],
936
+ "metadata": {
937
+ "accelerator": "GPU",
938
+ "colab": {
939
+ "private_outputs": true,
940
+ "provenance": [],
941
+ "gpuType": "A100",
942
+ "gpuClass": "premium",
943
+ "machine_shape": "hm"
944
+ },
945
+ "kernelspec": {
946
+ "display_name": "Python 3",
947
+ "name": "python3"
948
+ },
949
+ "language_info": {
950
+ "codemirror_mode": {
951
+ "name": "ipython",
952
+ "version": 3
953
+ },
954
+ "file_extension": ".py",
955
+ "mimetype": "text/x-python",
956
+ "name": "python",
957
+ "nbconvert_exporter": "python",
958
+ "pygments_lexer": "ipython3",
959
+ "version": "3.9.13"
960
+ }
961
+ },
962
+ "nbformat": 4,
963
+ "nbformat_minor": 0
964
+ }
monster_music_transformer.py ADDED
@@ -0,0 +1,809 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Monster_Music_Transformer.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1_fs1W2cuXxiMKznQIP3wtUxSIbxt71Nk
8
+
9
+ # Monster Music Transformer (ver. 1.0)
10
+
11
+ ***
12
+
13
+ Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
14
+
15
+ ***
16
+
17
+ WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
18
+
19
+ ***
20
+
21
+ #### Project Los Angeles
22
+
23
+ #### Tegridy Code 2024
24
+
25
+ ***
26
+
27
+ # (GPU CHECK)
28
+ """
29
+
30
+ #@title NVIDIA GPU check
31
+ !nvidia-smi
32
+
33
+ """# (SETUP ENVIRONMENT)"""
34
+
35
+ #@title Install dependencies
36
+ !git clone --depth 1 https://github.com/asigalov61/Monster-MIDI-Dataset
37
+ !pip install huggingface_hub
38
+ !pip install einops
39
+ !pip install torch-summary
40
+ !apt install fluidsynth #Pip does not work for some reason. Only apt works
41
+
42
+ # Commented out IPython magic to ensure Python compatibility.
43
+ #@title Import modules
44
+
45
+ print('=' * 70)
46
+ print('Loading core Monster Music Transformer modules...')
47
+
48
+ import os
49
+ import copy
50
+ import pickle
51
+ import secrets
52
+ import statistics
53
+ from time import time
54
+ import tqdm
55
+
56
+ print('=' * 70)
57
+ print('Loading main Monster Music Transformer modules...')
58
+ import torch
59
+
60
+ # %cd /content/Monster-MIDI-Dataset
61
+
62
+ import TMIDIX
63
+
64
+ from midi_to_colab_audio import midi_to_colab_audio
65
+
66
+ from x_transformer_1_27_16 import *
67
+
68
+ import random
69
+
70
+ # %cd /content/
71
+ print('=' * 70)
72
+ print('Loading aux Monster Music Transformer modules...')
73
+
74
+ import matplotlib.pyplot as plt
75
+
76
+ from torchsummary import summary
77
+ from sklearn import metrics
78
+
79
+ from IPython.display import Audio, display
80
+
81
+ from huggingface_hub import hf_hub_download
82
+
83
+ from google.colab import files
84
+
85
+ print('=' * 70)
86
+ print('Done!')
87
+ print('Enjoy! :)')
88
+ print('=' * 70)
89
+
90
+ """# (LOAD MODEL)"""
91
+
92
+ #@title Load Monster Music Transformer Pre-Trained Model
93
+
94
+ #@markdown Choose model
95
+
96
+ select_model_to_load = "651M-32L-Fast-Large" # @param ["651M-32L-Fast-Large"]
97
+
98
+ #@markdown Model precision option
99
+
100
+ model_precision = "bfloat16" # @param ["bfloat16", "float16"]
101
+
102
+ #@markdown bfloat16 == Half precision/faster speed (if supported, otherwise the model will default to float16)
103
+
104
+ #@markdown float16 == Full precision/fast speed
105
+
106
+ plot_tokens_embeddings = "None" # @param ["None", "Start Times", "Durations Velocities", "Piano Pitches", "Drums Pitches", "Aux"]
107
+
108
+ print('=' * 70)
109
+ print('Loading Monster Music Transformer', select_model_to_load,'Pre-Trained Model...')
110
+ print('Please wait...')
111
+ print('=' * 70)
112
+
113
+ full_path_to_models_dir = "/content/Monster-MIDI-Dataset/"
114
+
115
+ if select_model_to_load == '651M-32L-Fast-Large':
116
+
117
+ model_checkpoint_file_name = 'Monster_Music_Transformer_Large_Trained_Model_22501_steps_0.3419_loss_0.9121_acc.pth'
118
+ model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name
119
+ num_layers = 36
120
+ if os.path.isfile(model_path):
121
+ print('Model already exists...')
122
+
123
+ else:
124
+ hf_hub_download(repo_id='asigalov61/Monster-Music-Transformer',
125
+ filename=model_checkpoint_file_name,
126
+ local_dir='/content/Monster-MIDI-Dataset',
127
+ local_dir_use_symlinks=False)
128
+
129
+ print('=' * 70)
130
+ print('Instantiating model...')
131
+
132
+ device_type = 'cuda'
133
+
134
+ if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
135
+ dtype = 'bfloat16'
136
+ else:
137
+ dtype = 'float16'
138
+
139
+ if model_precision == 'float16':
140
+ dtype = 'float16'
141
+
142
+ ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
143
+ ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
144
+
145
+ SEQ_LEN = 8192
146
+
147
+ # instantiate the model
148
+
149
+ model = TransformerWrapper(
150
+ num_tokens = 19080,
151
+ max_seq_len = SEQ_LEN,
152
+ attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 32, attn_flash=True)
153
+ )
154
+
155
+ model = AutoregressiveWrapper(model, ignore_index=19079)
156
+
157
+ model.cuda()
158
+ print('=' * 70)
159
+
160
+ print('Loading model checkpoint...')
161
+
162
+ model.load_state_dict(torch.load(model_path))
163
+ print('=' * 70)
164
+
165
+ model.eval()
166
+
167
+ print('Done!')
168
+ print('=' * 70)
169
+
170
+ print('Model will use', dtype, 'precision...')
171
+ print('=' * 70)
172
+
173
+ # Model stats
174
+ print('Model summary...')
175
+ summary(model)
176
+
177
+ # Plot Token Embeddings
178
+ if plot_tokens_embeddings != 'None':
179
+ tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()
180
+
181
+ if plot_tokens_embeddings == 'Start Times':
182
+ tok_range = [0, 256]
183
+
184
+ elif plot_tokens_embeddings == 'Durations Velocities':
185
+ tok_range = [256, 2304]
186
+
187
+ elif plot_tokens_embeddings == 'Piano Pitches':
188
+ tok_range = [2304, 2304+128]
189
+
190
+ elif plot_tokens_embeddings == 'Drums Pitches':
191
+ tok_range = [18945-128, 18945]
192
+
193
+ elif plot_tokens_embeddings == 'Aux':
194
+ tok_range = [18945, 19079]
195
+
196
+ if plot_tokens_embeddings != 'None':
197
+
198
+ tok_emb1 = []
199
+
200
+ for t in tok_emb[tok_range[0]:tok_range[1]]:
201
+ tok_emb1.append(t)
202
+
203
+ cos_sim = metrics.pairwise_distances(
204
+ tok_emb1, metric='cosine'
205
+ )
206
+ plt.figure(figsize=(7, 7))
207
+ plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
208
+ im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
209
+ plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
210
+ plt.xlabel("Position")
211
+ plt.ylabel("Position")
212
+ plt.tight_layout()
213
+ plt.plot()
214
+ plt.savefig("/content/Monster-Music-Transformer-Tokens-Embeddings-Plot.png", bbox_inches="tight")
215
+
216
+ """# (GENERATE)
217
+
218
+ # (IMPROV)
219
+ """
220
+
221
+ #@title Standard Improv Generator
222
+
223
+ #@markdown Improv type
224
+
225
+ improv_type = "Random Freestyle" # @param ["Random Freestyle", "Freestyle without Drums", "Freestyle with Drums", "Custom"]
226
+
227
+ #@markdown Custom Improv settings
228
+
229
+ first_note_MIDI_patch_number = 0 # @param {type:"slider", min:0, max:128, step:1}
230
+ add_drums = False #@param {type:"boolean"}
231
+
232
+ #@markdown Generation settings
233
+
234
+ number_of_tokens_tp_generate = 546 # @param {type:"slider", min:30, max:8190, step:3}
235
+ number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
236
+ temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
237
+
238
+ #@markdown Other settings
239
+
240
+ render_MIDI_to_audio = True # @param {type:"boolean"}
241
+
242
+ print('=' * 70)
243
+ print('Monster Music Transformer Standard Improv Model Generator')
244
+ print('=' * 70)
245
+
246
+ if improv_type == 'Random Freestyle':
247
+
248
+ outy = [19077]
249
+
250
+ if improv_type == 'Freestyle without Drums':
251
+
252
+ outy = [19077, 18946]
253
+
254
+ if improv_type == 'Freestyle with Drums':
255
+
256
+ outy = [19077, 18947]
257
+
258
+ if improv_type == 'Custom':
259
+
260
+ if add_drums:
261
+ drumsp = 18947 # Yes
262
+ else:
263
+ drumsp = 18946 # No
264
+
265
+ outy = [19077, drumsp, 18948+first_note_MIDI_patch_number]
266
+
267
+ print('Selected Improv sequence:')
268
+ print(outy)
269
+ print('=' * 70)
270
+
271
+ torch.cuda.empty_cache()
272
+
273
+ inp = [outy] * number_of_batches_to_generate
274
+
275
+ inp = torch.LongTensor(inp).cuda()
276
+
277
+ with ctx:
278
+ out = model.generate(inp,
279
+ number_of_tokens_tp_generate,
280
+ temperature=temperature,
281
+ return_prime=True,
282
+ verbose=True)
283
+
284
+ out0 = out.tolist()
285
+
286
+ print('=' * 70)
287
+ print('Done!')
288
+ print('=' * 70)
289
+
290
+ torch.cuda.empty_cache()
291
+
292
+ #======================================================================
293
+
294
+ print('Rendering results...')
295
+
296
+ for i in range(number_of_batches_to_generate):
297
+
298
+ print('=' * 70)
299
+ print('Batch #', i)
300
+ print('=' * 70)
301
+
302
+ out1 = out0[i]
303
+
304
+ print('Sample INTs', out1[:12])
305
+ print('=' * 70)
306
+
307
+ if len(out1) != 0:
308
+
309
+ song = out1
310
+ song_f = []
311
+
312
+ time = 0
313
+ dur = 0
314
+ vel = 90
315
+ pitch = 0
316
+ channel = 0
317
+
318
+ patches = [-1] * 16
319
+
320
+ channels = [0] * 16
321
+ channels[9] = 1
322
+
323
+ for ss in song:
324
+
325
+ if 0 <= ss < 256:
326
+
327
+ time += ss * 16
328
+
329
+ if 256 <= ss < 2304:
330
+
331
+ dur = ((ss-256) // 8) * 16
332
+ vel = (((ss-256) % 8)+1) * 15
333
+
334
+ if 2304 <= ss < 18945:
335
+
336
+ patch = (ss-2304) // 129
337
+
338
+ if patch < 128:
339
+
340
+ if patch not in patches:
341
+ if 0 in channels:
342
+ cha = channels.index(0)
343
+ channels[cha] = 1
344
+ else:
345
+ cha = 15
346
+
347
+ patches[cha] = patch
348
+ channel = patches.index(patch)
349
+ else:
350
+ channel = patches.index(patch)
351
+
352
+ if patch == 128:
353
+ channel = 9
354
+
355
+ pitch = (ss-2304) % 129
356
+
357
+ song_f.append(['note', time, dur, channel, pitch, vel, patch ])
358
+
359
+ patches = [0 if x==-1 else x for x in patches]
360
+
361
+ data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
362
+ output_signature = 'Monster Music Transformer',
363
+ output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),
364
+ track_name='Project Los Angeles',
365
+ list_of_MIDI_patches=patches
366
+ )
367
+
368
+
369
+ print('=' * 70)
370
+ print('Displaying resulting composition...')
371
+ print('=' * 70)
372
+
373
+ fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)
374
+
375
+ if render_MIDI_to_audio:
376
+ midi_audio = midi_to_colab_audio(fname + '.mid')
377
+ display(Audio(midi_audio, rate=16000, normalize=False))
378
+
379
+ TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
380
+
381
+ """# (CUSTOM MIDI)"""
382
+
383
+ #@title Load Seed MIDI
384
+
385
+ #@markdown Press play button to to upload your own seed MIDI or to load one of the provided sample seed MIDIs from the dropdown list below
386
+
387
+ select_seed_MIDI = "Upload your own custom MIDI" # @param ["Upload your own custom MIDI", "Monster-Music-Transformer-Piano-Seed-1", "Monster-Music-Transformer-Piano-Seed-2", "Monster-Music-Transformer-Piano-Seed-3", "Monster-Music-Transformer-Piano-Seed-4", "Monster-Music-Transformer-Piano-Seed-5", "Monster-Music-Transformer-Piano-Seed-6", "Monster-Music-Transformer-MI-Seed-1", "Monster-Music-Transformer-MI-Seed-2", "Monster-Music-Transformer-MI-Seed-3", "Monster-Music-Transformer-MI-Seed-4", "Monster-Music-Transformer-MI-Seed-5", "Monster-Music-Transformer-MI-Seed-6"]
388
+ render_MIDI_to_audio = False # @param {type:"boolean"}
389
+
390
+ print('=' * 70)
391
+ print('Monster Music Transformer Seed MIDI Loader')
392
+ print('=' * 70)
393
+
394
+ f = ''
395
+
396
+ if select_seed_MIDI != "Upload your own custom MIDI":
397
+ print('Loading seed MIDI...')
398
+ f = '/content/Monster-MIDI-Dataset/Seeds/'+select_seed_MIDI+'.mid'
399
+
400
+ else:
401
+ print('Upload your own custom MIDI...')
402
+ print('=' * 70)
403
+ uploaded_MIDI = files.upload()
404
+ if list(uploaded_MIDI.keys()):
405
+ f = list(uploaded_MIDI.keys())[0]
406
+
407
+ if f != '':
408
+
409
+ print('=' * 70)
410
+ print('File:', f)
411
+ print('=' * 70)
412
+
413
+ #=======================================================
414
+ # START PROCESSING
415
+
416
+ # Convering MIDI to ms score with MIDI.py module
417
+ score = TMIDIX.midi2single_track_ms_score(open(f, 'rb').read(), recalculate_channels=False)
418
+
419
+ # INSTRUMENTS CONVERSION CYCLE
420
+ events_matrix = []
421
+ itrack = 1
422
+ patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
423
+
424
+ while itrack < len(score):
425
+ for event in score[itrack]:
426
+ if event[0] == 'note' or event[0] == 'patch_change':
427
+ events_matrix.append(event)
428
+ itrack += 1
429
+
430
+ events_matrix.sort(key=lambda x: x[1])
431
+
432
+ events_matrix1 = []
433
+
434
+ for event in events_matrix:
435
+ if event[0] == 'patch_change':
436
+ patches[event[2]] = event[3]
437
+
438
+ if event[0] == 'note':
439
+ event.extend([patches[event[3]]])
440
+
441
+ if events_matrix1:
442
+ if (event[1] == events_matrix1[-1][1]):
443
+ if ([event[3], event[4]] != events_matrix1[-1][3:5]):
444
+ events_matrix1.append(event)
445
+ else:
446
+ events_matrix1.append(event)
447
+
448
+ else:
449
+ events_matrix1.append(event)
450
+
451
+ if len(events_matrix1) > 0:
452
+ if min([e[1] for e in events_matrix1]) >= 0 and min([e[2] for e in events_matrix1]) >= 0:
453
+
454
+ #=======================================================
455
+ # PRE-PROCESSING
456
+
457
+ # checking number of instruments in a composition
458
+ instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9]))
459
+ instruments_list = list(set([y[3] for y in events_matrix1]))
460
+
461
+ if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0:
462
+
463
+ #======================================
464
+
465
+ events_matrix2 = []
466
+
467
+ # Recalculating timings
468
+ for e in events_matrix1:
469
+
470
+ # Original timings
471
+ e[1] = int(e[1] / 16)
472
+ e[2] = int(e[2] / 16)
473
+
474
+ #===================================
475
+ # ORIGINAL COMPOSITION
476
+ #===================================
477
+
478
+ # Sorting by patch, pitch, then by start-time
479
+
480
+ events_matrix1.sort(key=lambda x: x[6])
481
+ events_matrix1.sort(key=lambda x: x[4], reverse=True)
482
+ events_matrix1.sort(key=lambda x: x[1])
483
+
484
+ #=======================================================
485
+ # FINAL PROCESSING
486
+
487
+ melody_chords = []
488
+ melody_chords2 = []
489
+
490
+ # Break between compositions / Intro seq
491
+
492
+ if 9 in instruments_list:
493
+ drums_present = 18947 # Yes
494
+ else:
495
+ drums_present = 18946 # No
496
+
497
+ if events_matrix1[0][3] != 9:
498
+ pat = events_matrix1[0][6]
499
+ else:
500
+ pat = 128
501
+
502
+ melody_chords.extend([19077, drums_present, 18948+pat, 0]) # Intro seq
503
+
504
+ #=======================================================
505
+ # MAIN PROCESSING CYCLE
506
+ #=======================================================
507
+
508
+ abs_time = 0
509
+
510
+ pbar_time = 0
511
+
512
+ pe = events_matrix1[0]
513
+
514
+ chords_counter = 1
515
+
516
+ comp_chords_len = len(list(set([y[1] for y in events_matrix1])))
517
+
518
+ for e in events_matrix1:
519
+
520
+ #=======================================================
521
+ # Timings...
522
+
523
+ # Cliping all values...
524
+ delta_time = max(0, min(255, e[1]-pe[1]))
525
+
526
+ # Durations and channels
527
+
528
+ dur = max(0, min(255, e[2]))
529
+ cha = max(0, min(15, e[3]))
530
+
531
+ # Patches
532
+ if cha == 9: # Drums patch will be == 128
533
+ pat = 128
534
+
535
+ else:
536
+ pat = e[6]
537
+
538
+ # Pitches
539
+
540
+ ptc = max(1, min(127, e[4]))
541
+
542
+ # Velocities
543
+
544
+ # Calculating octo-velocity
545
+ vel = max(8, min(127, e[5]))
546
+ velocity = round(vel / 15)-1
547
+
548
+ #=======================================================
549
+ # Outro seq
550
+
551
+ # if ((comp_chords_len - chords_counter) == 50) and (delta_time != 0):
552
+ # out_t = 18946+delta_time
553
+ # out_p = 19202+ptc
554
+ # melody_chords.extend([18945, out_t, out_p]) # outro seq
555
+
556
+
557
+ # if delta_time != 0:
558
+ # chords_counter += 1
559
+
560
+ #=======================================================
561
+ # FINAL NOTE SEQ
562
+
563
+ # Writing final note asynchronously
564
+
565
+ dur_vel = (8 * dur) + velocity
566
+ pat_ptc = (129 * pat) + ptc
567
+
568
+ if delta_time != 0:
569
+ melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
570
+ else:
571
+ melody_chords.extend([dur_vel+256, pat_ptc+2304])
572
+ melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])
573
+
574
+ pe = e
575
+
576
+ #=======================================================
577
+
578
+ # melody_chords.extend([19462, 19462, 19462]) # EOS
579
+
580
+ #=======================================================
581
+
582
+ # TOTAL DICTIONARY SIZE 19462+1=19463
583
+ #=======================================================
584
+
585
+ #=======================================================
586
+
587
+ song = melody_chords
588
+
589
+ song_f = []
590
+
591
+ time = 0
592
+ dur = 0
593
+ vel = 90
594
+ pitch = 0
595
+ channel = 0
596
+
597
+ patches = [-1] * 16
598
+
599
+ channels = [0] * 16
600
+ channels[9] = 1
601
+
602
+ for ss in song:
603
+
604
+ if 0 <= ss < 256:
605
+
606
+ time += ss * 16
607
+
608
+ if 256 <= ss < 2304:
609
+
610
+ dur = ((ss-256) // 8) * 16
611
+ vel = (((ss-256) % 8)+1) * 15
612
+
613
+ if 2304 <= ss < 18945:
614
+
615
+ patch = (ss-2304) // 129
616
+
617
+ if patch < 128:
618
+
619
+ if patch not in patches:
620
+ if 0 in channels:
621
+ cha = channels.index(0)
622
+ channels[cha] = 1
623
+ else:
624
+ cha = 15
625
+
626
+ patches[cha] = patch
627
+ channel = patches.index(patch)
628
+ else:
629
+ channel = patches.index(patch)
630
+
631
+ if patch == 128:
632
+ channel = 9
633
+
634
+ pitch = (ss-2304) % 129
635
+
636
+ song_f.append(['note', time, dur, channel, pitch, vel, patch ])
637
+
638
+ patches = [0 if x==-1 else x for x in patches]
639
+
640
+ detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
641
+ output_signature = 'Monster Music Transformer',
642
+ output_file_name = '/content/Monster-Music-Transformer-Seed-Composition',
643
+ track_name='Project Los Angeles',
644
+ list_of_MIDI_patches=patches
645
+ )
646
+
647
+ #=======================================================
648
+
649
+ print('=' * 70)
650
+ print('Composition stats:')
651
+ print('Composition has', len(melody_chords2), 'notes')
652
+ print('Composition has', len(melody_chords), 'tokens')
653
+ print('Composition MIDI patches:', sorted(list(set([((y-2304) // 129) for y in melody_chords if 2304 <= y < 18945]))))
654
+ print('=' * 70)
655
+
656
+ print('Displaying resulting composition...')
657
+ print('=' * 70)
658
+
659
+ fname = '/content/Monster-Music-Transformer-Seed-Composition'
660
+
661
+ if render_MIDI_to_audio:
662
+ midi_audio = midi_to_colab_audio(fname + '.mid')
663
+ display(Audio(midi_audio, rate=16000, normalize=False))
664
+
665
+ TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
666
+
667
+ else:
668
+ print('=' * 70)
669
+
670
+ """# (CONTINUATION)"""
671
+
672
+ #@title Standard Continuation
673
+
674
+ #@markdown Generation settings
675
+
676
+ try_to_generate_outro = False #@param {type:"boolean"}
677
+ number_of_prime_tokens = 7191 # @param {type:"slider", min:3, max:8190, step:3}
678
+ number_of_tokens_to_generate = 504 # @param {type:"slider", min:30, max:8190, step:3}
679
+ number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
680
+ temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
681
+
682
+ #@markdown Other settings
683
+ include_prime_tokens_in_generated_output = False #@param {type:"boolean"}
684
+ allow_model_to_stop_generation_if_needed = False #@param {type:"boolean"}
685
+ render_MIDI_to_audio = True # @param {type:"boolean"}
686
+
687
+ print('=' * 70)
688
+ print('Monster Music Transformer Standard Continuation Model Generator')
689
+ print('=' * 70)
690
+
691
+ if allow_model_to_stop_generation_if_needed:
692
+ min_stop_token = 19078
693
+ else:
694
+ min_stop_token = None
695
+
696
+ outy = melody_chords[:number_of_prime_tokens]
697
+
698
+ if try_to_generate_outro:
699
+ outy.extend([18945])
700
+
701
+ torch.cuda.empty_cache()
702
+
703
+ inp = [outy] * number_of_batches_to_generate
704
+
705
+ inp = torch.LongTensor(inp).cuda()
706
+
707
+ with ctx:
708
+ out = model.generate(inp,
709
+ number_of_tokens_to_generate,
710
+ temperature=temperature,
711
+ return_prime=include_prime_tokens_in_generated_output,
712
+ eos_token=min_stop_token,
713
+ verbose=True)
714
+
715
+ out0 = out.tolist()
716
+
717
+ torch.cuda.empty_cache()
718
+
719
+ print('=' * 70)
720
+ print('Done!')
721
+ print('=' * 70)
722
+
723
+ #======================================================================
724
+ print('Rendering results...')
725
+
726
+ for i in range(number_of_batches_to_generate):
727
+
728
+ print('=' * 70)
729
+ print('Batch #', i)
730
+ print('=' * 70)
731
+
732
+ out1 = out0[i]
733
+
734
+ print('Sample INTs', out1[:12])
735
+ print('=' * 70)
736
+
737
+ if len(out) != 0:
738
+
739
+ song = out1
740
+ song_f = []
741
+
742
+ time = 0
743
+ dur = 0
744
+ vel = 90
745
+ pitch = 0
746
+ channel = 0
747
+
748
+ patches = [-1] * 16
749
+
750
+ channels = [0] * 16
751
+ channels[9] = 1
752
+
753
+ for ss in song:
754
+
755
+ if 0 <= ss < 256:
756
+
757
+ time += ss * 16
758
+
759
+ if 256 <= ss < 2304:
760
+
761
+ dur = ((ss-256) // 8) * 16
762
+ vel = (((ss-256) % 8)+1) * 15
763
+
764
+ if 2304 <= ss < 18945:
765
+
766
+ patch = (ss-2304) // 129
767
+
768
+ if patch < 128:
769
+
770
+ if patch not in patches:
771
+ if 0 in channels:
772
+ cha = channels.index(0)
773
+ channels[cha] = 1
774
+ else:
775
+ cha = 15
776
+
777
+ patches[cha] = patch
778
+ channel = patches.index(patch)
779
+ else:
780
+ channel = patches.index(patch)
781
+
782
+ if patch == 128:
783
+ channel = 9
784
+
785
+ pitch = (ss-2304) % 129
786
+
787
+ song_f.append(['note', time, dur, channel, pitch, vel, patch ])
788
+
789
+ patches = [0 if x==-1 else x for x in patches]
790
+
791
+ detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
792
+ output_signature = 'Monster Music Transformer',
793
+ output_file_name = '/content/Monster-Music-Transformer-Music-Composition_'+str(i),
794
+ track_name='Project Los Angeles',
795
+ list_of_MIDI_patches=patches
796
+ )
797
+ print('=' * 70)
798
+ print('Displaying resulting composition...')
799
+ print('=' * 70)
800
+
801
+ fname = '/content/Monster-Music-Transformer-Music-Composition_'+str(i)
802
+
803
+ if render_MIDI_to_audio:
804
+ midi_audio = midi_to_colab_audio(fname + '.mid')
805
+ display(Audio(midi_audio, rate=16000, normalize=False))
806
+
807
+ TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
808
+
809
+ """# Congrats! You did it! :)"""