"""Huggingface Dataset version of Banc Trawsgrifiadau Bangor""" import os import datasets # TODO: Add BibTeX citation _CITATION = """\ } """ _DESCRIPTION = """Huggingface Dataset version of Banc Trawsgrifiadau Bangor""" _HOMEPAGE = "https://git.techiaith.bangor.ac.uk/data-porth-technolegau-iaith/banc-trawsgrifiadau-bangor" _LICENSE = "Creative Commons Zero v1.0 Universal" _URL = "https://huggingface.co/datasets/prvInSpace/banc-trawsgrifiadau-bangor/resolve/main" # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class BancTrawsgrifiadauBangor(datasets.GeneratorBasedBuilder): """Huggingface Dataset version of Banc Trawsgrifiadau Bangor""" VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "audio_filename": datasets.Value("string"), "audio_filesize": datasets.Value("int64"), "transcript": datasets.Value("string"), "duration": datasets.Value("int64"), "audio": datasets.features.Audio(sampling_rate=16_000) # These are the features of your dataset like images, labels ... } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types # Here we define them above because they are different between the two configurations features=features, # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # Download the clips data_dir = dl_manager.download_and_extract( f"{_URL}/clips.zip") # Generate the splits return [ datasets.SplitGenerator( name="clips", # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": dl_manager.download(f"{_URL}/clips.tsv"), "path_to_clips": os.path.join(data_dir, "clips") }, ), datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": dl_manager.download(f"{_URL}/train.tsv"), "path_to_clips": os.path.join(data_dir, "clips") }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": dl_manager.download(f"{_URL}/test.tsv"), "path_to_clips": os.path.join(data_dir, "clips") }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, path_to_clips): print(path_to_clips) import csv # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for row in reader: path = f'{path_to_clips}/{row["audio_filename"]}' # Add the audio data with open(path, "rb") as file: row['audio'] = { 'path': path, 'bytes': file.read() } yield path, row