|
|
|
|
|
from glob import glob |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
import pandas as pd |
|
import requests |
|
|
|
|
|
_METADATA_URL = "metadata.csv" |
|
|
|
|
|
_CITATION = """\ |
|
@dataset{h_novel, |
|
author = {Xing Tian}, |
|
title = {h_novel}, |
|
month = aug, |
|
year = 2023, |
|
publisher = {Xing Tian}, |
|
version = {1.0}, |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains some SQ novel. |
|
It is supposed to be used for text generation tasks. |
|
""" |
|
|
|
|
|
class HNovel(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="ltxsba", version=VERSION, description="ltxsba"), |
|
datasets.BuilderConfig(name="ltxsba_1gb", version=VERSION, description="ltxsba_1gb"), |
|
datasets.BuilderConfig(name="ltxsba_5gb", version=VERSION, description="ltxsba_5gb"), |
|
datasets.BuilderConfig(name="ltxsba_100m", version=VERSION, description="ltxsba_100m"), |
|
datasets.BuilderConfig(name="ltxsba_500m", version=VERSION, description="ltxsba_500m"), |
|
|
|
datasets.BuilderConfig(name="yazhou", version=VERSION, description="yazhou"), |
|
datasets.BuilderConfig(name="yazhou_5m", version=VERSION, description="yazhou_5m"), |
|
datasets.BuilderConfig(name="yazhou_10m", version=VERSION, description="yazhou_10m"), |
|
datasets.BuilderConfig(name="yazhou_20m", version=VERSION, description="yazhou_20m"), |
|
datasets.BuilderConfig(name="yazhou_50m", version=VERSION, description="yazhou_50m"), |
|
datasets.BuilderConfig(name="yazhou_70m", version=VERSION, description="yazhou_70m"), |
|
|
|
datasets.BuilderConfig(name="all", version=VERSION, description="all"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"source": datasets.Value("string"), |
|
"idx": datasets.Value("string"), |
|
"filename": datasets.Value("string"), |
|
"novel_name": datasets.Value("string"), |
|
"row_idx": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage="", |
|
license="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_path = dl_manager.download(_METADATA_URL) |
|
archive_path = dl_path |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"archive_path": archive_path, "dl_manager": dl_manager}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, archive_path, dl_manager): |
|
"""Yields examples.""" |
|
sample_idx = 0 |
|
df = pd.read_csv(archive_path) |
|
for i, row in df.iterrows(): |
|
source = row["source"] |
|
filename = row["filename"] |
|
if self.config.name != "all" and source != self.config.name: |
|
continue |
|
|
|
try: |
|
filename = dl_manager.download(filename) |
|
|
|
filename = Path(filename) |
|
|
|
name = filename.stem |
|
splits = name.split("_") |
|
idx = splits[-1] |
|
novel_name = "_".join(splits[:-1]) |
|
|
|
row_idx = 1 |
|
with open(filename.as_posix(), "r", encoding="utf-8") as f: |
|
for txt_row in f: |
|
txt_row = str(txt_row).strip() |
|
if len(txt_row) == 0: |
|
continue |
|
|
|
yield sample_idx, { |
|
"source": source, |
|
"idx": idx, |
|
"filename": "/".join(filename.parts[-3:]), |
|
"novel_name": novel_name, |
|
"row_idx": row_idx, |
|
"text": txt_row, |
|
} |
|
row_idx += 1 |
|
sample_idx += 1 |
|
|
|
except Exception: |
|
continue |
|
|
|
|
|
if __name__ == '__main__': |
|
pass |
|
|