Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
167c717
1 Parent(s): e4d7191

Convert dataset to Parquet

Browse files

Convert dataset to Parquet.

README.md CHANGED
@@ -1,5 +1,4 @@
1
  ---
2
- pretty_name: SQuAD2.0
3
  annotations_creators:
4
  - crowdsourced
5
  language_creators:
@@ -20,23 +19,9 @@ task_ids:
20
  - open-domain-qa
21
  - extractive-qa
22
  paperswithcode_id: squad
23
- train-eval-index:
24
- - config: squad_v2
25
- task: question-answering
26
- task_id: extractive_question_answering
27
- splits:
28
- train_split: train
29
- eval_split: validation
30
- col_mapping:
31
- question: question
32
- context: context
33
- answers:
34
- text: text
35
- answer_start: answer_start
36
- metrics:
37
- - type: squad_v2
38
- name: SQuAD v2
39
  dataset_info:
 
40
  features:
41
  - name: id
42
  dtype: string
@@ -52,16 +37,39 @@ dataset_info:
52
  dtype: string
53
  - name: answer_start
54
  dtype: int32
55
- config_name: squad_v2
56
  splits:
57
  - name: train
58
- num_bytes: 116699950
59
  num_examples: 130319
60
  - name: validation
61
- num_bytes: 11660302
62
  num_examples: 11873
63
- download_size: 46494161
64
- dataset_size: 128360252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  ---
66
 
67
  # Dataset Card for "squad_v2"
 
1
  ---
 
2
  annotations_creators:
3
  - crowdsourced
4
  language_creators:
 
19
  - open-domain-qa
20
  - extractive-qa
21
  paperswithcode_id: squad
22
+ pretty_name: SQuAD2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  dataset_info:
24
+ config_name: squad_v2
25
  features:
26
  - name: id
27
  dtype: string
 
37
  dtype: string
38
  - name: answer_start
39
  dtype: int32
 
40
  splits:
41
  - name: train
42
+ num_bytes: 116732025
43
  num_examples: 130319
44
  - name: validation
45
+ num_bytes: 11661091
46
  num_examples: 11873
47
+ download_size: 17720493
48
+ dataset_size: 128393116
49
+ configs:
50
+ - config_name: squad_v2
51
+ data_files:
52
+ - split: train
53
+ path: squad_v2/train-*
54
+ - split: validation
55
+ path: squad_v2/validation-*
56
+ default: true
57
+ train-eval-index:
58
+ - config: squad_v2
59
+ task: question-answering
60
+ task_id: extractive_question_answering
61
+ splits:
62
+ train_split: train
63
+ eval_split: validation
64
+ col_mapping:
65
+ question: question
66
+ context: context
67
+ answers:
68
+ text: text
69
+ answer_start: answer_start
70
+ metrics:
71
+ - type: squad_v2
72
+ name: SQuAD v2
73
  ---
74
 
75
  # Dataset Card for "squad_v2"
dataset_infos.json CHANGED
@@ -1 +1,70 @@
1
- {"squad_v2": {"description": "combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers\n to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but\n also determine when no answer is supported by the paragraph and abstain from answering.\n", "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "squad_v2", "config_name": "squad_v2", "version": {"version_str": "2.0.0", "description": null, "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 116699950, "num_examples": 130319, "dataset_name": "squad_v2"}, "validation": {"name": "validation", "num_bytes": 11660302, "num_examples": 11873, "dataset_name": "squad_v2"}}, "download_checksums": {"https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json": {"num_bytes": 42123633, "checksum": "68dcfbb971bd3e96d5b46c7177b16c1a4e7d4bdef19fb204502738552dede002"}, "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json": {"num_bytes": 4370528, "checksum": "80a5225e94905956a6446d296ca1093975c4d3b3260f1d6c8f68bc2ab77182d8"}}, "download_size": 46494161, "post_processing_size": null, "dataset_size": 128360252, "size_in_bytes": 174854413}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "squad_v2": {
3
+ "description": "combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers\n to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but\n also determine when no answer is supported by the paragraph and abstain from answering.\n",
4
+ "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n",
5
+ "homepage": "https://rajpurkar.github.io/SQuAD-explorer/",
6
+ "license": "",
7
+ "features": {
8
+ "id": {
9
+ "dtype": "string",
10
+ "_type": "Value"
11
+ },
12
+ "title": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ },
16
+ "context": {
17
+ "dtype": "string",
18
+ "_type": "Value"
19
+ },
20
+ "question": {
21
+ "dtype": "string",
22
+ "_type": "Value"
23
+ },
24
+ "answers": {
25
+ "feature": {
26
+ "text": {
27
+ "dtype": "string",
28
+ "_type": "Value"
29
+ },
30
+ "answer_start": {
31
+ "dtype": "int32",
32
+ "_type": "Value"
33
+ }
34
+ },
35
+ "_type": "Sequence"
36
+ }
37
+ },
38
+ "task_templates": [
39
+ {
40
+ "task": "question-answering-extractive"
41
+ }
42
+ ],
43
+ "builder_name": "squad_v2",
44
+ "dataset_name": "squad_v2",
45
+ "config_name": "squad_v2",
46
+ "version": {
47
+ "version_str": "2.0.0",
48
+ "major": 2,
49
+ "minor": 0,
50
+ "patch": 0
51
+ },
52
+ "splits": {
53
+ "train": {
54
+ "name": "train",
55
+ "num_bytes": 116732025,
56
+ "num_examples": 130319,
57
+ "dataset_name": null
58
+ },
59
+ "validation": {
60
+ "name": "validation",
61
+ "num_bytes": 11661091,
62
+ "num_examples": 11873,
63
+ "dataset_name": null
64
+ }
65
+ },
66
+ "download_size": 17720493,
67
+ "dataset_size": 128393116,
68
+ "size_in_bytes": 146113609
69
+ }
70
+ }
squad_v2/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6da32ffb482ff463ad056477740d1bb284b96a45db3a08bee6a225ca6abf291
3
+ size 16369982
squad_v2/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0560174ab095c5ac0a8c8dc8da05f1625453c45a77e4ce9cabc6947ddfdd24cb
3
+ size 1350511