File size: 3,477 Bytes
e2d6333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815e37b
e2d6333
 
f42ac32
e2d6333
 
 
 
 
 
 
 
f42ac32
 
 
e2d6333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: cc-by-nc-4.0
tags:
- 3D
- motion
- music
- piano
pretty_name: FürElise
---

# FürElise: Capturing and Physically Synthesizing Hand Motions of Piano Performance

This hosts the [FürElise](https://for-elise.github.io/) dataset, which contains 10 hours, 153 pieces of piano music performed by 15 elite-level pianists, along with synchronized audio and key pressing events.

# Getting Started
To download the dataset and the related scripts, first run
```
git lfs install
# We skip the raw dataset.zip because it's too large
GIT_LFS_SKIP_SMUDGE=1 git clone  git@hf.co:datasets/rcwang/for_elise 
```
And then download assets, which will download around 44G of data.
```
cd for_elise
sh ./download_data.sh
```

# 3D Visualizer
We provide a web-based 3D visualizer of our dataset under `visualizer/` which has the same functionality as the one you see in the [project website](https://for-elise.github.io/). You can run it with the following commands:
```
cd visualizer
python server.py
```
Then you can access the visualizer by visiting `http://127.0.0.1:8080`.  You need `flask` and `numpy` to run the visualizer. 

For some long pieces, it might take several seconds to initialize the visualizer.

# Dataset structure
The metadata for all 153 pieces can be found in `metadata.json`:
```
[
  {
    "name": "Concerto in D Minor, BWV 1052: I. Allegro",
    "composer": "J.S. Bach",
    "piece_id": 0,
    "subject_id": 0
  },
  ...
]
```
Motion data for each music piece is stored in a single subdirectory under `dataset/`. The motion data is stored frame by frame with FPS 59.94.
```
piece_id # Directory
├── motion.pkl                    # Pickle file of a dictionary storing 3D hand motion data
│   ├── left                      # Motion data for the left hand
│   │   ├── joints                # Nx21x3, joint locations for every frame
│   │   ├── mano_params           # MANO hand parameters for each frame
│   │   │   ├── global_translation  # Nx3
│   │   │   ├── global_rotation     # Nx3x3
│   │   │   ├── pose                # Nx45
│   │   │   ├── shape               # 10
│   │   │   └── vertices            # Nx778x3
│   ├── right                     # Motion data for the right hand
│   │   ├── joints                # Nx21x3, joint locations for every frame
│   │   ├── mano_params           # MANO hand parameters for each frame
│   │   │   ├── global_translation  # Nx3
│   │   │   ├── global_rotation     # Nx3x3
│   │   │   ├── pose                # Nx45
│   │   │   ├── shape               # 10
│   │   │   └── vertices            # Nx778x3
├── midi.mid                      # Synchronized MIDI file recorded during performance
├── audio.mp3                     # Synchronized audio synthesized from the MIDI file
└── vis                           # Used for the 3D visualizer
    ├── metadata.json
    └── pressed_keys.pkl
```
# Licensing
This dataset is released under the [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) license.

# Cite
```
@inproceedings{wang2024piano,
  title = {FürElise: Capturing and Physically Synthesizing Hand Motions of Piano Performance},
  author = {Ruocheng Wang and Pei Xu and Haochen Shi and Elizabeth Schumann and C. Karen Liu},
  booktitle = {SIGGRAPH Asia 2024},
  year = {2024}
}
```