|
import json |
|
import os |
|
from itertools import combinations |
|
from random import seed, randint, shuffle |
|
|
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
|
|
def get_stats(filename): |
|
with open(filename) as f: |
|
_data = [json.loads(i) for i in f.read().splitlines()] |
|
return len(_data), list(set([len(i['choice']) for i in _data])), len(list(set([i['prefix'] for i in _data]))) |
|
|
|
|
|
def create_analogy(_data): |
|
analogy_data = [] |
|
seed(12) |
|
for i in _data: |
|
source = [] |
|
target = [] |
|
for s, t in zip(i['source'], i['target']): |
|
if s not in source and t not in target: |
|
source.append(s) |
|
target.append(t) |
|
assert len(source) == len(target), f"{len(source)} != {len(target)}" |
|
all_combinations = list(combinations(range(len(source)), 2)) |
|
for n, (q_h_id, q_t_id) in enumerate(all_combinations): |
|
choice = [[target[x], target[y]] for m, (x, y) in enumerate(all_combinations) if m != n] |
|
answer_id = randint(0, len(source) - 1) |
|
choice = choice[:answer_id] + [[target[q_h_id], target[q_t_id]]] + choice[answer_id:] |
|
assert choice[answer_id] == [target[q_h_id], target[q_t_id]] |
|
analogy_data.append({ |
|
"stem": [source[q_h_id], source[q_t_id]], |
|
"choice": choice, |
|
"answer": answer_id, |
|
"prefix": i["type"] |
|
}) |
|
return analogy_data |
|
|
|
data = load_dataset("relbert/scientific_and_creative_analogy", split='test') |
|
data = create_analogy(data) |
|
data_m = [i for i in data if i['prefix'] == 'metaphor'] |
|
data_s = [i for i in data if i['prefix'] != 'metaphor'] |
|
seed(12) |
|
shuffle(data_m) |
|
shuffle(data_s) |
|
validation = data_s[:int(0.1 * len(data_s))] + data_m[:int(0.1 * len(data_m))] |
|
test = data_s[int(0.1 * len(data_s)):] + data_m[int(0.1 * len(data_m)):] |
|
os.makedirs("dataset/scan", exist_ok=True) |
|
with open("dataset/scan/valid.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in validation])) |
|
|
|
with open("dataset/scan/test.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in test])) |
|
|
|
t_size, t_num_choice, t_relation_type = get_stats("dataset/scan/test.jsonl") |
|
v_size, v_num_choice, v_relation_type = get_stats("dataset/scan/valid.jsonl") |
|
stat = [{ |
|
"name": "`scan`", |
|
"Size (valid/test)": f"{v_size}/{t_size}", |
|
"Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}", |
|
"Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}", |
|
"Original Reference": "[relbert/scientific_and_creative_analogy](https://huggingface.co/datasets/relbert/scientific_and_creative_analogy)" |
|
}] |
|
print(pd.DataFrame(stat).to_markdown(index=False)) |
|
|