import json import os from itertools import combinations from random import shuffle, seed from datasets import load_dataset # # create analogy from `relbert/semeval2012_relational_similarity` # data = load_dataset("relbert/semeval2012_relational_similarity", split="validation") # analogy_data = [{ # "stem": i['positives'][0], "choice": i["negatives"] + [i['positives'][1]], "answer": 2, "prefix": i["relation_type"] # } for i in data] # os.makedirs("dataset/semeval2012_relational_similarity", exist_ok=True) # with open("dataset/semeval2012_relational_similarity/valid.jsonl", "w") as f: # f.write("\n".join([json.dumps(i) for i in analogy_data])) # # create analogy from `relbert/t_rex_relational_similarity` # data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_1_max_predicate_100", split="test") # analogy_data = [] # for i in data: # if len(i['positives']) < 2: # continue # for m, (q, c) in enumerate(combinations(i['positives'], 2)): # if m > 5: # break # negative = i['negatives'] # for n in range(6): # seed(n) # shuffle(negative) # analogy_data.append({ # "stem": q, "choice": [c] + negative[:5], "answer": 0, "prefix": i["relation_type"] # }) # os.makedirs("dataset/t_rex_relational_similarity", exist_ok=True) # with open("dataset/t_rex_relational_similarity/test.jsonl", "w") as f: # f.write("\n".join([json.dumps(i) for i in analogy_data])) # # data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_4_max_predicate_100", split="validation") # analogy_data = [] # for i in data: # if len(i['positives']) < 5: # continue # for m, (q, c) in enumerate(combinations(i['positives'], 2)): # if m > 5: # break # negative = i['negatives'] # for n in range(3): # seed(n) # shuffle(negative) # analogy_data.append({ # "stem": q, "choice": [c] + negative[:5], "answer": 0, "prefix": i["relation_type"] # }) # os.makedirs("dataset/t_rex_relational_similarity", exist_ok=True) # with open("dataset/t_rex_relational_similarity/valid.jsonl", "w") as f: # f.write("\n".join([json.dumps(i) for i in analogy_data])) # create analogy from `relbert/conceptnet_relational_similarity` for s in ['test', 'validation']: data = load_dataset("relbert/conceptnet_relational_similarity", split=s) analogy_data = [] for i in data: if len(i['positives']) < 2: continue for m, (q, c) in enumerate(combinations(i['positives'], 2)): if m > 5: break negative = i['negatives'] for n in range(6): seed(n) shuffle(negative) analogy_data.append({ "stem": q, "choice": [c] + negative[:5], "answer": 0, "prefix": i["relation_type"] }) print(len(analogy_data)) os.makedirs("dataset/conceptnet_relational_similarity", exist_ok=True) with open(f"dataset/conceptnet_relational_similarity/{s if s == 'test' else 'valid'}.jsonl", "w") as f: f.write("\n".join([json.dumps(i) for i in analogy_data]))