|
from itertools import product |
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
|
|
def get_stats(name): |
|
relation = [] |
|
size = [] |
|
data = load_dataset("relbert/t_rex", name) |
|
splits = data.keys() |
|
for split in splits: |
|
df = data[split].to_pandas() |
|
size.append({ |
|
"number of pairs": len(df), |
|
"number of unique relation types": len(df["relation"].unique()) |
|
}) |
|
relation.append(df.groupby('relation')['head'].count().to_dict()) |
|
relation = pd.DataFrame(relation, index=[f"number of pairs ({s})" for s in splits]).T |
|
relation = relation.fillna(0).astype(int) |
|
size = pd.DataFrame(size, index=splits).T |
|
return relation, size |
|
|
|
df_relation, df_size = get_stats("filter_unified.min_entity_4_max_predicate_10") |
|
print(f"\n- Number of instances (`filter_unified.min_entity_4_max_predicate_10`) \n\n {df_size.to_markdown()}") |
|
print(f"\n- Number of pairs in each relation type (`filter_unified.min_entity_4_max_predicate_10`) \n\n {df_relation.to_markdown()}") |
|
|
|
|
|
parameters_min_e_freq = [1, 2, 3, 4] |
|
parameters_max_p_freq = [100, 50, 25, 10] |
|
df_size_list = [] |
|
for e, p in product(parameters_min_e_freq, parameters_max_p_freq): |
|
_, df_size = get_stats(f"filter_unified.min_entity_{e}_max_predicate_{p}") |
|
df_size.pop("test") |
|
df_size.columns = [f"min_entity_{e}_max_predicate_{p} ({c})" for c in df_size.columns] |
|
df_size_list.append(df_size) |
|
df_size_list = pd.concat([i.T for i in df_size_list]) |
|
print(df_size_list.to_markdown()) |