Rename filtering_purify.py to min_entity_filter.py
Browse files- filtering_purify.py +0 -133
- min_entity_filter.py +55 -0
filtering_purify.py
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
from itertools import product
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import pandas as pd
|
6 |
-
import seaborn as sns
|
7 |
-
from matplotlib import pyplot as plt
|
8 |
-
|
9 |
-
from datasets import Dataset
|
10 |
-
|
11 |
-
parameters_min_e_freq = [1, 2, 3, 4]
|
12 |
-
parameters_max_p_freq = [100, 50, 25, 10]
|
13 |
-
assert len(parameters_min_e_freq) == 4
|
14 |
-
assert len(parameters_max_p_freq) == 4
|
15 |
-
sns.set_theme(style="whitegrid")
|
16 |
-
|
17 |
-
|
18 |
-
def is_entity(token):
|
19 |
-
return any(i.isupper() for i in token)
|
20 |
-
|
21 |
-
|
22 |
-
# load filtered data
|
23 |
-
with open(f"data/t_rex.filter_unified.jsonl") as f:
|
24 |
-
data = Dataset.from_list([json.loads(i) for i in f.read().split('\n') if len(i) > 0])
|
25 |
-
df_main = data.to_pandas()
|
26 |
-
# entity frequency filter
|
27 |
-
c_sub = df_main.groupby("subject")['title'].count()
|
28 |
-
c_obj = df_main.groupby("object")['title'].count()
|
29 |
-
key = set(list(c_sub.index) + list(c_obj.index))
|
30 |
-
count_main = pd.DataFrame(
|
31 |
-
[{'entity': k, "subject": c_sub[k] if k in c_sub else 0, "object": c_obj[k] if k in c_obj else 0} for k in key])
|
32 |
-
count_main.index = count_main.pop('entity')
|
33 |
-
count_main['is_entity'] = [is_entity(i) for i in count_main.index]
|
34 |
-
count_main['sum'] = count_main['subject'] + count_main['object']
|
35 |
-
|
36 |
-
|
37 |
-
def filtering(row, min_freq: int = 3, target: str = "subject"):
|
38 |
-
if not row['is_entity']:
|
39 |
-
return True
|
40 |
-
return row[target] >= min_freq
|
41 |
-
|
42 |
-
|
43 |
-
def main(min_entity_freq, max_pairs_predicate, min_pairs_predicate: int = 3, random_sampling: bool = True):
|
44 |
-
df = df_main.copy()
|
45 |
-
count_filter_sub = count_main[count_main.apply(lambda x: filtering(x, min_freq=min_entity_freq, target='subject'), axis=1)]['subject']
|
46 |
-
count_filter_obj = count_main[count_main.apply(lambda x: filtering(x, min_freq=min_entity_freq, target='object'), axis=1)]['object']
|
47 |
-
vocab_sub = set(count_filter_sub.index)
|
48 |
-
vocab_obj = set(count_filter_obj.index)
|
49 |
-
df['flag_subject'] = [i in vocab_sub for i in df['subject']]
|
50 |
-
df['flag_object'] = [i in vocab_obj for i in df['object']]
|
51 |
-
df['flag'] = df['flag_subject'] & df['flag_object']
|
52 |
-
df_filter = df[df['flag']]
|
53 |
-
df_filter.pop("flag")
|
54 |
-
df_filter.pop("flag_subject")
|
55 |
-
df_filter.pop("flag_object")
|
56 |
-
df_filter['count_subject'] = [count_filter_sub.loc[i] for i in df_filter['subject']]
|
57 |
-
df_filter['count_object'] = [count_filter_obj.loc[i] for i in df_filter['object']]
|
58 |
-
df_filter['count_sum'] = df_filter['count_subject'] + df_filter['count_object']
|
59 |
-
|
60 |
-
# predicate frequency filter
|
61 |
-
if random_sampling:
|
62 |
-
df_balanced = pd.concat(
|
63 |
-
[g if len(g) <= max_pairs_predicate else g.sample(max_pairs_predicate, random_state=0) for _, g in
|
64 |
-
df_filter.groupby("predicate") if len(g) >= min_pairs_predicate])
|
65 |
-
else:
|
66 |
-
df_balanced = pd.concat(
|
67 |
-
[g if len(g) <= max_pairs_predicate else g.sort_values(by='count_sum', ascending=False).head(max_pairs_predicate) for _, g in
|
68 |
-
df_filter.groupby("predicate") if len(g) >= min_pairs_predicate])
|
69 |
-
|
70 |
-
df_balanced.pop("count_subject")
|
71 |
-
df_balanced.pop("count_object")
|
72 |
-
df_balanced.pop("count_sum")
|
73 |
-
df_balanced = df_balanced.drop_duplicates(subset=['subject', 'object', 'predicate'], keep='last')
|
74 |
-
# return data
|
75 |
-
target_data = [i.to_dict() for _, i in df_balanced.iterrows()]
|
76 |
-
predicate_dist = df_balanced.groupby("predicate")['text'].count().sort_values(ascending=False).to_dict()
|
77 |
-
entity, count = np.unique(df_balanced['object'].tolist() + df_balanced['subject'].tolist(), return_counts=True)
|
78 |
-
entity_dist = dict(list(zip(entity.tolist(), count.tolist())))
|
79 |
-
return predicate_dist, entity_dist, target_data
|
80 |
-
|
81 |
-
|
82 |
-
if __name__ == '__main__':
|
83 |
-
|
84 |
-
p_dist_full = []
|
85 |
-
e_dist_full = []
|
86 |
-
config = []
|
87 |
-
candidates = list(product(parameters_min_e_freq, parameters_max_p_freq))
|
88 |
-
|
89 |
-
# run filtering with different configs
|
90 |
-
for min_e_freq, max_p_freq in candidates:
|
91 |
-
p_dist, e_dist, new_data = main(
|
92 |
-
min_entity_freq=min_e_freq, max_pairs_predicate=max_p_freq, random_sampling=False)
|
93 |
-
p_dist_full.append(p_dist)
|
94 |
-
e_dist_full.append(e_dist)
|
95 |
-
config.append([min_e_freq, max_p_freq])
|
96 |
-
# save data
|
97 |
-
with open(f"data/t_rex.filter_unified.min_entity_{min_e_freq}_max_predicate_{max_p_freq}.jsonl", 'w') as f:
|
98 |
-
f.write('\n'.join([json.dumps(i) for i in new_data]))
|
99 |
-
|
100 |
-
# plot predicate distribution
|
101 |
-
df_p = pd.DataFrame([dict(enumerate(sorted(p.values(), reverse=True))) for p in p_dist_full]).T
|
102 |
-
df_p.columns = [f"min entity: {mef}, max predicate: {mpf}" for mef, mpf in candidates]
|
103 |
-
fig, axes = plt.subplots(2, 2, constrained_layout=True)
|
104 |
-
fig.suptitle('Predicate Distribution over Different Configurations')
|
105 |
-
for (x, y), mpf in zip([(0, 0), (0, 1), (1, 0), (1, 1)], parameters_max_p_freq):
|
106 |
-
_df = df_p[[f"min entity: {mef}, max predicate: {mpf}" for mef in parameters_min_e_freq]]
|
107 |
-
_df.columns = [f"min entity: {mef}" for mef in parameters_min_e_freq]
|
108 |
-
ax = sns.lineplot(ax=axes[x, y], data=_df, linewidth=1)
|
109 |
-
if mpf != 100:
|
110 |
-
ax.legend_.remove()
|
111 |
-
axes[x, y].set_title(f'max predicate: {mpf}')
|
112 |
-
fig.supxlabel('unique predicates sorted by frequency')
|
113 |
-
fig.supylabel('number of triples')
|
114 |
-
fig.savefig("data/stats.predicate_distribution.png", bbox_inches='tight')
|
115 |
-
fig.clf()
|
116 |
-
|
117 |
-
# plot entity distribution
|
118 |
-
df_e = pd.DataFrame([dict(enumerate(sorted(e.values(), reverse=True))) for e in e_dist_full]).T
|
119 |
-
df_e.columns = [f"min entity: {mef}, max predicate: {mpf}" for mef, mpf in candidates]
|
120 |
-
fig, axes = plt.subplots(2, 2, constrained_layout=True)
|
121 |
-
fig.suptitle('Entity Distribution over Different Configurations')
|
122 |
-
for (x, y), mpf in zip([(0, 0), (0, 1), (1, 0), (1, 1)], parameters_max_p_freq):
|
123 |
-
_df = df_e[[f"min entity: {mef}, max predicate: {mpf}" for mef in parameters_min_e_freq]]
|
124 |
-
_df.columns = [f"min entity: {mef}" for mef in parameters_min_e_freq]
|
125 |
-
ax = sns.lineplot(ax=axes[x, y], data=_df, linewidth=1)
|
126 |
-
ax.set(xscale='log')
|
127 |
-
if mpf != 100:
|
128 |
-
ax.legend_.remove()
|
129 |
-
axes[x, y].set_title(f'max predicate: {mpf}')
|
130 |
-
fig.supxlabel('unique entities sorted by frequency')
|
131 |
-
fig.supylabel('number of triples')
|
132 |
-
fig.savefig("data/stats.entity_distribution.png", bbox_inches='tight')
|
133 |
-
fig.clf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
min_entity_filter.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from itertools import product
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import seaborn as sns
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
|
9 |
+
from datasets import Dataset
|
10 |
+
|
11 |
+
min_entity_freq = 5
|
12 |
+
|
13 |
+
|
14 |
+
def is_entity(token):
|
15 |
+
return any(i.isupper() for i in token)
|
16 |
+
|
17 |
+
|
18 |
+
# load filtered data
|
19 |
+
with open(f"data/t_rex.filter_unified.jsonl") as f:
|
20 |
+
data = Dataset.from_list([json.loads(i) for i in f.read().split('\n') if len(i) > 0])
|
21 |
+
|
22 |
+
df = data.to_pandas()
|
23 |
+
|
24 |
+
# entity frequency filter
|
25 |
+
c_sub = df.groupby("subject")['title'].count()
|
26 |
+
c_obj = df.groupby("object")['title'].count()
|
27 |
+
key = set(list(c_sub.index) + list(c_obj.index))
|
28 |
+
count_main = pd.DataFrame([{'entity': k, "subject": c_sub[k] if k in c_sub else 0, "object": c_obj[k] if k in c_obj else 0} for k in key])
|
29 |
+
count_main.index = count_main.pop('entity')
|
30 |
+
count_main['is_entity'] = [is_entity(i) for i in count_main.index]
|
31 |
+
count_main['sum'] = count_main['subject'] + count_main['object']
|
32 |
+
|
33 |
+
|
34 |
+
def filtering(row, target: str = "subject"):
|
35 |
+
if not row['is_entity']:
|
36 |
+
return True
|
37 |
+
return row[target] >= parameters_min_e_freq
|
38 |
+
|
39 |
+
|
40 |
+
count_filter_sub = count_main[count_main.apply(lambda x: filtering(x, target='subject'), axis=1)]['subject']
|
41 |
+
count_filter_obj = count_main[count_main.apply(lambda x: filtering(x, target='object'), axis=1)]['object']
|
42 |
+
vocab_sub = set(count_filter_sub.index)
|
43 |
+
vocab_obj = set(count_filter_obj.index)
|
44 |
+
df['flag_subject'] = [i in vocab_sub for i in df['subject']]
|
45 |
+
df['flag_object'] = [i in vocab_obj for i in df['object']]
|
46 |
+
df['flag'] = df['flag_subject'] & df['flag_object']
|
47 |
+
df_filter = df[df['flag']]
|
48 |
+
df_filter.pop("flag")
|
49 |
+
df_filter.pop("flag_subject")
|
50 |
+
df_filter.pop("flag_object")
|
51 |
+
df_filter = df_filter.drop_duplicates(subset=['subject', 'object', 'predicate'], keep='last')
|
52 |
+
with open(f"data/t_rex.filter_unified.min_entity_{min_entity_freq}.jsonl", 'w') as f:
|
53 |
+
f.write('\n'.join([json.dumps(i.to_dict()) for _, i in df_filter.iterrows()]))
|
54 |
+
|
55 |
+
print(f"{len(df_filter)} triples, {len(df['predicate'].unique())}")
|