# coding=utf-8 # Copyright 2024 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 from pathlib import Path from random import shuffle import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {A bark detection dataset with positive and negative samples of 1 second}, author={Rodrigo Marcos GarcĂ­a}, year={2024} } """ _DESCRIPTION = """\ This is a bark detection dataset with positive and negative samples of 1 second """ _HOMEPAGE = "https://huggingface.co/datasets/rmarcosg/bark-detection" _LICENSE = "Apache 2.0" class BarkDetection(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "file": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=44_100), "label": datasets.Value("string"), } ), supervised_keys=("file", "label"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": "train", "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": "validation", "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": "test", "split": "test" }, ), ] def _generate_examples(self, archive_path, split): """Yields examples.""" key = 0 audio_files_dir = Path(archive_path) / split for audio_file_path in shuffle(audio_files_dir.glob("*/*.wav")): filename = audio_file_path.stem label = audio_file_path.parent.stem yield key, { "file": filename, "audio": str(audio_file_path), "label": label, } key += 1