File size: 4,823 Bytes
5c19284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# export WANDB_MODE=offline
# openlm-research/open_llama_3b
# --num_train_epochs 1 \
torchrun --nproc_per_node=8 --master_port=20001 fastchat/train/pretrain_streaming_mem.py \
--model_name_or_path NousResearch/Llama-2-7b-hf \
--train_file_dir /workspace/medvicuna/pretrain_data_170G \
--cache_dir /workspace/.cache \
--bf16 True \
--max_steps 12000 \
--output_dir /workspace/medvicuna/output_medllama2_pretrain \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 16 \
--gradient_accumulation_steps 32 \
--evaluation_strategy "no" \
--eval_steps 4500 \
--save_strategy "steps" \
--save_steps 250 \
--save_total_limit 1000 \
--learning_rate 5e-5 \
--weight_decay 0.1 \
--warmup_ratio 0.02 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--model_max_length 4096 \
--gradient_checkpointing True &>> pretrain_set1.log
torchrun --nproc_per_node=8 --master_port=20001 fastchat/train/pretrain_streaming_mem.py \
--model_name_or_path NousResearch/Llama-2-7b-hf \
--train_file_dir /workspace/medvicuna/pretrain_data_170G \
--cache_dir /workspace/.cache \
--bf16 True \
--max_steps 24000 \
--output_dir /workspace/medvicuna/output_medllama2_pretrain \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 16 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--eval_steps 4500 \
--save_strategy "steps" \
--save_steps 500 \
--save_total_limit 1000 \
--learning_rate 5e-5 \
--weight_decay 0.1 \
--warmup_ratio 0.04 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--model_max_length 4096 \
--gradient_checkpointing True &>> pretrain_set2.log
torchrun --nproc_per_node=8 --master_port=20001 fastchat/train/pretrain_streaming_mem.py \
--model_name_or_path NousResearch/Llama-2-7b-hf \
--train_file_dir /workspace/medvicuna/pretrain_data_170G \
--cache_dir /workspace/.cache \
--bf16 True \
--max_steps 24000 \
--output_dir /workspace/medvicuna/output_medllama2_pretrain \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--gradient_accumulation_steps 32 \
--evaluation_strategy "no" \
--eval_steps 4500 \
--save_strategy "steps" \
--save_steps 500 \
--save_total_limit 1000 \
--learning_rate 5e-5 \
--weight_decay 0.1 \
--warmup_ratio 0.04 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--model_max_length 4096 \
--gradient_checkpointing True &>> pretrain_set3.log
torchrun --nproc_per_node=8 --master_port=20001 fastchat/train/pretrain_streaming_mem.py \
--model_name_or_path NousResearch/Llama-2-7b-hf \
--train_file_dir /workspace/medvicuna/pretrain_data_170G \
--cache_dir /workspace/.cache \
--bf16 True \
--max_steps 12000 \
--output_dir /workspace/medvicuna/output_medllama2_pretrain \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 16 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--eval_steps 4500 \
--save_strategy "steps" \
--save_steps 250 \
--save_total_limit 1000 \
--learning_rate 5e-5 \
--weight_decay 0.1 \
--warmup_ratio 0.04 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True &>> pretrain_set4.log
torchrun --nproc_per_node=8 --master_port=20001 fastchat/train/pretrain_streaming_mem.py \
--model_name_or_path yahma/llama-7b-hf \
--train_file_dir /workspace/medvicuna/pretrain_data_170G \
--cache_dir /workspace/.cache \
--bf16 True \
--max_steps 12000 \
--output_dir /workspace/medvicuna/output_medllama_pretrain \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 16 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--eval_steps 4500 \
--save_strategy "steps" \
--save_steps 250 \
--save_total_limit 1000 \
--learning_rate 5e-5 \
--weight_decay 0.1 \
--warmup_ratio 0.04 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True &>> pretrain_set5.log |