task_id
stringlengths 4
14
| prompt
stringlengths 112
1.41k
| canonical_solution
stringlengths 17
2.16k
| test
stringlengths 148
2.54k
| declaration
stringlengths 22
1.2k
| example_test
stringlengths 0
679
| buggy_solution
stringlengths 13
2.16k
| bug_type
stringclasses 6
values | failure_symptoms
stringclasses 3
values | entry_point
stringlengths 1
30
| signature
stringlengths 14
76
| docstring
stringlengths 23
1.21k
| instruction
stringlengths 103
1.32k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPP/0 | /*
Check if in given vector of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements({1.0, 2.0, 3.0}, 0.5)
false
>>> has_close_elements({1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3)
true
*/
#include<stdio.h>
#include<vector>
#include<math.h>
using namespace std;
bool has_close_elements(vector<float> numbers, float threshold){
| int i,j;
for (i=0;i<numbers.size();i++)
for (j=i+1;j<numbers.size();j++)
if (abs(numbers[i]-numbers[j])<threshold)
return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
vector<float> a={1.0, 2.0, 3.9, 4.0, 5.0, 2.2};
assert (has_close_elements(a, 0.3)==true);
assert (has_close_elements(a, 0.05) == false);
assert (has_close_elements({1.0, 2.0, 5.9, 4.0, 5.0}, 0.95) == true);
assert (has_close_elements({1.0, 2.0, 5.9, 4.0, 5.0}, 0.8) ==false);
assert (has_close_elements({1.0, 2.0, 3.0, 4.0, 5.0}, 2.0) == true);
assert (has_close_elements({1.1, 2.2, 3.1, 4.1, 5.1}, 1.0) == true);
assert (has_close_elements({1.1, 2.2, 3.1, 4.1, 5.1}, 0.5) == false);
}
| #include<stdio.h>
#include<vector>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool has_close_elements(vector<float> numbers, float threshold){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (has_close_elements({1.0, 2.0, 3.0}, 0.5) == false && "failure 1");
assert (has_close_elements({1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3) && "failure 2") ;
}
| int i,j;
for (i=0;i<numbers.size();i++)
for (j=i+1;j<numbers.size();j++)
if (numbers[i]-numbers[j]<threshold)
return true;
return false;
}
| missing logic | incorrect output | has_close_elements | bool has_close_elements(vector<float> numbers, float threshold) | Check if in given vector of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements({1.0, 2.0, 3.0}, 0.5)
false
>>> has_close_elements({1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3)
true | Write a C++ function `bool has_close_elements(vector<float> numbers, float threshold)` to solve the following problem:
Check if in given vector of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements({1.0, 2.0, 3.0}, 0.5)
false
>>> has_close_elements({1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3)
true |
CPP/1 | /*
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the vector of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups("( ) (( )) (( )( ))")
{"()", "(())", "(()())"}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<string> separate_paren_groups(string paren_string){
| vector<string> all_parens;
string current_paren;
int level=0;
char chr;
int i;
for (i=0;i<paren_string.length();i++)
{
chr=paren_string[i];
if (chr=='(')
{
level+=1;
current_paren+=chr;
}
if (chr==')')
{
level-=1;
current_paren+=chr;
if (level==0){
all_parens.push_back(current_paren);
current_paren="";
}
}
}
return all_parens;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(separate_paren_groups("(()()) ((())) () ((())()())"),{"(()())", "((()))", "()", "((())()())"}));
assert (issame(separate_paren_groups("() (()) ((())) (((())))"), {"()", "(())", "((()))", "(((())))" }));
assert (issame(separate_paren_groups("(()(())((())))") ,{ "(()(())((())))" }));
assert (issame(separate_paren_groups("( ) (( )) (( )( ))") ,{"()", "(())", "(()())"}));
} | #include<stdio.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<string> separate_paren_groups(string paren_string){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(separate_paren_groups("( ) (( )) (( )( ))") ,{"()", "(())", "(()())"}));
}
| vector<string> all_parens;
string current_paren;
int level=0;
char chr;
int i;
for (i=0;i<paren_string.length();i++)
{
chr=paren_string[i];
if (chr=='(')
{
level+=1;
current_paren+=chr;
}
if (chr==')')
{
level-=1;
current_paren+=chr;
if (level<0){
all_parens.push_back(current_paren);
current_paren="";
}
}
}
return all_parens;
}
| operator misuse | incorrect output | separate_paren_groups | vector<string> separate_paren_groups(string paren_string) | Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the vector of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups("( ) (( )) (( )( ))")
{"()", "(())", "(()())"} | Write a C++ function `vector<string> separate_paren_groups(string paren_string)` to solve the following problem:
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the vector of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups("( ) (( )) (( )( ))")
{"()", "(())", "(()())"} |
CPP/2 | /*
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
*/
#include<stdio.h>
#include<math.h>
using namespace std;
float truncate_number(float number){
| return number-int(number);
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (truncate_number(3.5) == 0.5);
assert (abs(truncate_number(1.33) - 0.33) < 1e-4);
assert (abs(truncate_number(123.456) - 0.456) < 1e-4);
} | #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
float truncate_number(float number){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (truncate_number(3.5) == 0.5);
}
| return number-int(number)+1;
}
| excess logic | incorrect output | truncate_number | float truncate_number(float number) | Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5 | Write a C++ function `float truncate_number(float number)` to solve the following problem:
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5 |
CPP/3 | /*
You"re given a vector of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account falls below zero, and
at that point function should return true. Otherwise it should return false.
>>> below_zero({1, 2, 3})
false
>>> below_zero({1, 2, -4, 5})
true
*/
#include<stdio.h>
#include<vector>
using namespace std;
bool below_zero(vector<int> operations){
| int num=0;
for (int i=0;i<operations.size();i++)
{
num+=operations[i];
if (num<0) return true;
}
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (below_zero({}) == false);
assert (below_zero({1, 2, -3, 1, 2, -3}) == false);
assert (below_zero({1, 2, -4, 5, 6}) == true);
assert (below_zero({1, -1, 2, -2, 5, -5, 4, -4}) == false);
assert (below_zero({1, -1, 2, -2, 5, -5, 4, -5}) == true);
assert (below_zero({1, -2, 2, -2, 5, -5, 4, -4}) == true);
} | #include<stdio.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
bool below_zero(vector<int> operations){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (below_zero({1, 2, 3}) == false);
assert (below_zero({1, 2, -4, 5}) == true);
}
| int num=0;
for (int i=0;i<operations.size();i++)
{
num+=operations[i];
if (num==0) return true;
}
return false;
}
| operator misuse | incorrect output | below_zero | bool below_zero(vector<int> operations) | You"re given a vector of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account falls below zero, and
at that point function should return true. Otherwise it should return false.
>>> below_zero({1, 2, 3})
false
>>> below_zero({1, 2, -4, 5})
true | Write a C++ function `bool below_zero(vector<int> operations)` to solve the following problem:
You"re given a vector of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account falls below zero, and
at that point function should return true. Otherwise it should return false.
>>> below_zero({1, 2, 3})
false
>>> below_zero({1, 2, -4, 5})
true |
CPP/4 | /*
For a given vector of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation({1.0, 2.0, 3.0, 4.0})
1.0
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
float mean_absolute_deviation(vector<float> numbers){
| float sum=0;
float avg,msum,mavg;
int i=0;
for (i=0;i<numbers.size();i++)
sum+=numbers[i];
avg=sum/numbers.size();
msum=0;
for (i=0;i<numbers.size();i++)
msum+=abs(numbers[i]-avg);
return msum/numbers.size();
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(mean_absolute_deviation({1.0, 2.0, 3.0}) - 2.0/3.0) < 1e-4);
assert (abs(mean_absolute_deviation({1.0, 2.0, 3.0, 4.0}) - 1.0) < 1e-4);
assert (abs(mean_absolute_deviation({1.0, 2.0, 3.0, 4.0, 5.0}) - 6.0/5.0) < 1e-4);
} | #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
float mean_absolute_deviation(vector<float> numbers){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(mean_absolute_deviation({1.0, 2.0, 3.0, 4.0}) - 1.0) < 1e-4);
}
| float sum=0;
float avg,msum,mavg;
int i=0;
for (i=0;i<numbers.size();i++)
sum+=numbers[i];
avg=sum/numbers.size();
msum=0;
for (i=0;i<numbers.size();i++)
msum+=abs(numbers[i]-avg);
return msum/avg;
}
| variable misuse | incorrect output | mean_absolute_deviation | float mean_absolute_deviation(vector<float> numbers) | For a given vector of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation({1.0, 2.0, 3.0, 4.0})
1.0 | Write a C++ function `float mean_absolute_deviation(vector<float> numbers)` to solve the following problem:
For a given vector of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation({1.0, 2.0, 3.0, 4.0})
1.0 |
CPP/5 | /*
Insert a number "delimeter" between every two consecutive elements of input vector `numbers"
>>> intersperse({}, 4)
{}
>>> intersperse({1, 2, 3}, 4)
{1, 4, 2, 4, 3}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> intersperse(vector<int> numbers, int delimeter){
| vector<int> out={};
if (numbers.size()>0) out.push_back(numbers[0]);
for (int i=1;i<numbers.size();i++)
{
out.push_back(delimeter);
out.push_back(numbers[i]);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(intersperse({}, 7), {}));
assert (issame(intersperse({5, 6, 3, 2}, 8),{5, 8, 6, 8, 3, 8, 2}));
assert (issame(intersperse({2, 2, 2}, 2),{2, 2, 2, 2, 2}));
} | #include<stdio.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<int> intersperse(vector<int> numbers, int delimeter){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(intersperse({}, 4), {}));
assert (issame(intersperse({1, 2, 3}, 4),{1, 4, 2, 4, 3}));
}
| vector<int> out={};
for (int i=1;i<numbers.size();i++)
{
out.push_back(delimeter);
out.push_back(numbers[i]);
}
return out;
}
| missing logic | incorrect output | intersperse | vector<int> intersperse(vector<int> numbers, int delimeter) | Insert a number "delimeter" between every two consecutive elements of input vector `numbers"
>>> intersperse({}, 4)
{}
>>> intersperse({1, 2, 3}, 4)
{1, 4, 2, 4, 3} | Write a C++ function `vector<int> intersperse(vector<int> numbers, int delimeter)` to solve the following problem:
Insert a number "delimeter" between every two consecutive elements of input vector `numbers"
>>> intersperse({}, 4)
{}
>>> intersperse({1, 2, 3}, 4)
{1, 4, 2, 4, 3} |
CPP/6 | /*
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parse_nested_parens("(()()) ((())) () ((())()())")
{2, 3, 1, 3}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<int> parse_nested_parens(string paren_string){
| vector<int> all_levels;
string current_paren;
int level=0,max_level=0;
char chr;
int i;
for (i=0;i<paren_string.length();i++)
{
chr=paren_string[i];
if (chr=='(')
{
level+=1;
if (level>max_level) max_level=level;
current_paren+=chr;
}
if (chr==')')
{
level-=1;
current_paren+=chr;
if (level==0){
all_levels.push_back(max_level);
current_paren="";
max_level=0;
}
}
}
return all_levels;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(parse_nested_parens("(()()) ((())) () ((())()())"),{2, 3, 1, 3}));
assert (issame(parse_nested_parens("() (()) ((())) (((())))") , {1, 2, 3, 4}));
assert (issame(parse_nested_parens("(()(())((())))") ,{4}));
} | #include<stdio.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<int> parse_nested_parens(string paren_string){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(parse_nested_parens("(()()) ((())) () ((())()())"),{2, 3, 1, 3}));
}
| vector<int> all_levels;
string current_paren;
int level=0,max_level=0;
char chr;
int i;
for (i=0;i<paren_string.length();i++)
{
chr=paren_string[i];
if (chr=='(')
{
level+=1;
if (level>max_level) max_level=level;
current_paren+=chr;
}
if (chr==')')
{
max_level-=1;
current_paren+=chr;
if (level==0){
all_levels.push_back(max_level);
current_paren="";
max_level=0;
}
}
}
return all_levels;
}
| variable misuse | incorrect output | parse_nested_parens | vector<int> parse_nested_parens(string paren_string) | Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parse_nested_parens("(()()) ((())) () ((())()())")
{2, 3, 1, 3} | Write a C++ function `vector<int> parse_nested_parens(string paren_string)` to solve the following problem:
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parse_nested_parens("(()()) ((())) () ((())()())")
{2, 3, 1, 3} |
CPP/7 | /*
Filter an input vector of strings only for ones that contain given substring
>>> filter_by_substring({}, "a")
{}
>>> filter_by_substring({"abc", "bacd", "cde", "vector"}, "a")
{"abc", "bacd", "vector"}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<string> filter_by_substring(vector<string> strings, string substring){
| vector<string> out;
for (int i=0;i<strings.size();i++)
{
if (strings[i].find(substring)!=strings[i].npos)
out.push_back(strings[i]);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(filter_by_substring({}, "john"),{}));
assert (issame(filter_by_substring({"xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"}, "xxx"), {"xxx", "xxxAAA", "xxx"}));
assert (issame(filter_by_substring({"xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"}, "xx"),{"xxx", "aaaxxy", "xxxAAA", "xxx"}));
assert (issame(filter_by_substring({"grunt", "trumpet", "prune", "gruesome"}, "run") ,{"grunt", "prune"}));
}
| #include<stdio.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<string> filter_by_substring(vector<string> strings, string substring){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(filter_by_substring({}, "a"),{}));
assert (issame(filter_by_substring({"abc", "bacd", "cde", "array"}, "a"), {"abc", "bacd", "array"}));
}
| vector<string> out;
for (int i=0;i<strings.size();i++)
{
if (substring.find(strings[i])!=strings[i].npos)
out.push_back(strings[i]);
}
return out;
}
| variable misuse | incorrect output | filter_by_substring | vector<string> filter_by_substring(vector<string> strings, string substring) | Filter an input vector of strings only for ones that contain given substring
>>> filter_by_substring({}, "a")
{}
>>> filter_by_substring({"abc", "bacd", "cde", "vector"}, "a")
{"abc", "bacd", "vector"} | Write a C++ function `vector<string> filter_by_substring(vector<string> strings, string substring)` to solve the following problem:
Filter an input vector of strings only for ones that contain given substring
>>> filter_by_substring({}, "a")
{}
>>> filter_by_substring({"abc", "bacd", "cde", "vector"}, "a")
{"abc", "bacd", "vector"} |
CPP/8 | /*
For a given vector of integers, return a vector consisting of a sum and a product of all the integers in a vector.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product({})
(0, 1)
>>> sum_product({1, 2, 3, 4})
(10, 24)
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> sum_product(vector<int> numbers){
| int sum=0,product=1;
for (int i=0;i<numbers.size();i++)
{
sum+=numbers[i];
product*=numbers[i];
}
return {sum,product};
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sum_product({}) ,{0, 1}));
assert (issame(sum_product({1, 1, 1}), {3, 1}));
assert (issame(sum_product({100, 0}),{100, 0}));
assert (issame(sum_product({3, 5, 7}) , {3 + 5 + 7, 3 * 5 * 7}));
assert (issame(sum_product({10}) ,{10, 10}));
}
| #include<stdio.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<int> sum_product(vector<int> numbers){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sum_product({}) ,{0, 1}));
assert (issame(sum_product({1, 2, 3,4}), {10, 24}));
}
| int sum=0,product=0;
for (int i=0;i<numbers.size();i++)
{
sum+=numbers[i];
product*=numbers[i];
}
return {sum,product};
}
| value misuse | incorrect output | sum_product | vector<int> sum_product(vector<int> numbers) | For a given vector of integers, return a vector consisting of a sum and a product of all the integers in a vector.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product({})
(0, 1)
>>> sum_product({1, 2, 3, 4})
(10, 24) | Write a C++ function `vector<int> sum_product(vector<int> numbers)` to solve the following problem:
For a given vector of integers, return a vector consisting of a sum and a product of all the integers in a vector.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product({})
(0, 1)
>>> sum_product({1, 2, 3, 4})
(10, 24) |
CPP/9 | /*
From a given vector of integers, generate a vector of rolling maximum element found until given moment
in the sequence.
>>> rolling_max({1, 2, 3, 2, 3, 4, 2})
{1, 2, 3, 3, 3, 4, 4}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> rolling_max(vector<int> numbers){
| vector<int> out;
int max=0;
for (int i=0;i<numbers.size();i++)
{
if (numbers[i]>max) max=numbers[i];
out.push_back(max);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(rolling_max({}),{}));
assert (issame(rolling_max({1, 2, 3, 4}) , {1, 2, 3, 4}));
assert (issame(rolling_max({4, 3, 2, 1}),{4, 4, 4, 4}));
assert (issame(rolling_max({3, 2, 3, 100, 3}) ,{3, 3, 3, 100, 100}));
} | #include<stdio.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<int> rolling_max(vector<int> numbers){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(rolling_max({1, 2, 3, 2, 3, 4, 2}),{1, 2, 3, 3, 3, 4, 4}));
}
| vector<int> out;
int max=0;
for (int i=0;i<numbers.size();i++)
{
if (numbers[i]>max) max=numbers[i];
out.push_back(numbers[i]);
}
return out;
}
| variable misuse | incorrect output | rolling_max | vector<int> rolling_max(vector<int> numbers) | From a given vector of integers, generate a vector of rolling maximum element found until given moment
in the sequence.
>>> rolling_max({1, 2, 3, 2, 3, 4, 2})
{1, 2, 3, 3, 3, 4, 4} | Write a C++ function `vector<int> rolling_max(vector<int> numbers)` to solve the following problem:
From a given vector of integers, generate a vector of rolling maximum element found until given moment
in the sequence.
>>> rolling_max({1, 2, 3, 2, 3, 4, 2})
{1, 2, 3, 3, 3, 4, 4} |
CPP/10 | #include<stdio.h>
#include<string>
using namespace std;
bool is_palindrome(string str){
//Test if given string is a palindrome
string s(str.rbegin(),str.rend());
return s==str;
}
string make_palindrome(string str){
/*
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
>>> make_palindrome("")
""
>>> make_palindrome("cat")
"catac"
>>> make_palindrome("cata")
"catac"
*/
| int i;
for (i=0;i<str.length();i++)
{
string rstr=str.substr(i);
if (is_palindrome(rstr))
{
string nstr;
nstr=str.substr(0,i);
string n2str(nstr.rbegin(),nstr.rend());
return str+n2str;
}
}
string n2str(str.rbegin(),str.rend());
return str+n2str;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (make_palindrome("") == "");
assert (make_palindrome("x") == "x");
assert (make_palindrome("xyz") == "xyzyx");
assert (make_palindrome("xyx") == "xyx") ;
assert (make_palindrome("jerry") == "jerryrrej");
}
| #include<stdio.h>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
bool is_palindrome(string str){
string s(str.rbegin(),str.rend());
return s==str;
}
string make_palindrome(string str){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (make_palindrome("") == "");
assert (make_palindrome("cat") == "catac");
assert (make_palindrome("cata") == "catac");
}
| int i;
for (i=0;i<str.length();i++)
{
if (is_palindrome(str))
{
string nstr;
nstr=str.substr(0,i);
string n2str(nstr.rbegin(),nstr.rend());
return str+n2str;
}
}
string n2str(str.rbegin(),str.rend());
return str+n2str;
}
| missing logic | stackoverflow | make_palindrome | string make_palindrome(string str) | Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
>>> make_palindrome("")
""
>>> make_palindrome("cat")
"catac"
>>> make_palindrome("cata")
"catac" | Write a C++ function `string make_palindrome(string str)` to solve the following problem:
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
>>> make_palindrome("")
""
>>> make_palindrome("cat")
"catac"
>>> make_palindrome("cata")
"catac" |
CPP/11 | /*
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor("010", "110")
"100"
*/
#include<stdio.h>
#include<string>
using namespace std;
string string_xor(string a,string b){
| string output="";
for (int i=0;(i<a.length() and i<b.length());i++)
{
if (i<a.length() and i<b.length())
{
if (a[i]== b[i])
{
output+='0';
}
else output+='1';
}
else
{
if (i>=a.length())
{
output+=b[i];
}
else output+=a[i];
}
}
return output;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (string_xor("111000", "101010") == "010010");
assert (string_xor("1", "1") == "0");
assert (string_xor("0101", "0000") == "0101");
}
| #include<stdio.h>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
string string_xor(string a,string b){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (string_xor("010", "110") == "100");
}
| string output="";
for (int i=0;(i<a.length() and i<b.length());i++)
{
if (i<a.length() and i<b.length())
{
if (a[i]== b[i])
{
output+='1';
}
else output+='0';
}
else
{
if (i>=a.length())
{
output+=b[i];
}
else output+=a[i];
}
}
return output;
}
| value misuse | incorrect output | string_xor | string string_xor(string a,string b) | Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor("010", "110")
"100" | Write a C++ function `string string_xor(string a,string b)` to solve the following problem:
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor("010", "110")
"100" |
CPP/12 | /*
Out of vector of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input vector is empty.
>>> longest({})
>>> longest({"a", "b", "c"})
"a"
>>> longest({"a", "bb", "ccc"})
"ccc"
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
string longest(vector<string> strings){
| string out;
for (int i=0;i<strings.size();i++)
{
if (strings[i].length()>out.length()) out=strings[i];
}
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (longest({}) == "");
assert (longest({"x", "y", "z"}) == "x");
assert (longest({"x", "yyy", "zzzz", "www", "kkkk", "abc"}) == "zzzz");
}
| #include<stdio.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
string longest(vector<string> strings){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (longest({}) == "");
assert (longest({"a", "b", "c"}) == "a");
assert (longest({"a", "bb", "ccc"}) == "ccc");
}
| string out;
for (int i=0;i<strings.size();i++)
{
if (strings[i].length()<out.length()) out=strings[i];
}
return out;
}
| operator misuse | incorrect output | longest | string longest(vector<string> strings) | Out of vector of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input vector is empty.
>>> longest({})
>>> longest({"a", "b", "c"})
"a"
>>> longest({"a", "bb", "ccc"})
"ccc" | Write a C++ function `string longest(vector<string> strings)` to solve the following problem:
Out of vector of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input vector is empty.
>>> longest({})
>>> longest({"a", "b", "c"})
"a"
>>> longest({"a", "bb", "ccc"})
"ccc" |
CPP/13 | /*
Return a greatest common divisor of two integers a and b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5
*/
#include<stdio.h>
using namespace std;
int greatest_common_divisor(int a, int b){
| int out,m;
while (true){
if (a<b)
{
m=a;a=b;b=m;
}
a=a%b;
if (a==0) return b;
}
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (greatest_common_divisor(3, 7) == 1);
assert (greatest_common_divisor(10, 15) == 5);
assert (greatest_common_divisor(49, 14) == 7);
assert (greatest_common_divisor(144, 60) == 12);
}
| #include<stdio.h>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
int greatest_common_divisor(int a, int b){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (greatest_common_divisor(3, 5) == 1);
assert (greatest_common_divisor(25, 15) == 5);
}
| int out,m;
while (true){
if (a<b)
{
m=a;a=b;b=m;
}
a=a%b;
if (a==0) return a;
}
}
| variable misuse | incorrect output | greatest_common_divisor | int greatest_common_divisor(int a, int b) | Return a greatest common divisor of two integers a and b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5 | Write a C++ function `int greatest_common_divisor(int a, int b)` to solve the following problem:
Return a greatest common divisor of two integers a and b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5 |
CPP/14 | /*
Return vector of all prefixes from shortest to longest of the input string
>>> all_prefixes("abc")
{"a", "ab", "abc"}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<string> all_prefixes(string str){
| vector<string> out;
string current="";
for (int i=0;i<str.length();i++)
{
current=current+str[i];
out.push_back(current);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(all_prefixes(""),{}));
assert (issame(all_prefixes("asdfgh") ,{"a", "as", "asd", "asdf", "asdfg", "asdfgh"}));
assert (issame(all_prefixes("WWW") ,{"W", "WW", "WWW"}));
}
| #include<stdio.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<string> all_prefixes(string str){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(all_prefixes("abc"),{"a","ab","abc"}));
}
| vector<string> out;
string current="";
for (int i=0;i<str.length();i++)
{
current=current+str[i];
out.push_back(current);
}
out.push_back(current);
return out;
}
| excess logic | incorrect output | all_prefixes | vector<string> all_prefixes(string str) | Return vector of all prefixes from shortest to longest of the input string
>>> all_prefixes("abc")
{"a", "ab", "abc"} | Write a C++ function `vector<string> all_prefixes(string str)` to solve the following problem:
Return vector of all prefixes from shortest to longest of the input string
>>> all_prefixes("abc")
{"a", "ab", "abc"} |
CPP/15 | /*
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
>>> string_sequence(0)
"0"
>>> string_sequence(5)
"0 1 2 3 4 5"
*/
#include<stdio.h>
#include<string>
using namespace std;
string string_sequence(int n){
| string out="0";
for (int i=1;i<=n;i++)
out=out+" "+to_string(i);
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (string_sequence(0) == "0");
assert (string_sequence(3) == "0 1 2 3");
assert (string_sequence(10) == "0 1 2 3 4 5 6 7 8 9 10");
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string string_sequence(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (string_sequence(0) == "0");
assert (string_sequence(5) == "0 1 2 3 4 5");
}
| string out="0";
for (int i=1;i<n;i++)
out=out+" "+to_string(i);
return out;
}
| value misuse | incorrect output | string_sequence | string string_sequence(int n) | Return a string containing space-delimited numbers starting from 0 upto n inclusive.
>>> string_sequence(0)
"0"
>>> string_sequence(5)
"0 1 2 3 4 5" | Write a C++ function `string string_sequence(int n)` to solve the following problem:
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
>>> string_sequence(0)
"0"
>>> string_sequence(5)
"0 1 2 3 4 5" |
CPP/16 | /*
Given a string, find out how many distinct characters (regardless of case) does it consist of
>>> count_distinct_characters("xyzXYZ")
3
>>> count_distinct_characters("Jerry")
4
*/
#include<stdio.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
int count_distinct_characters(string str){
| vector<char> distinct={};
transform(str.begin(),str.end(),str.begin(),::tolower);
for (int i=0;i<str.size();i++)
{
bool isin=false;
for (int j=0;j<distinct.size();j++)
if (distinct[j]==str[i])
isin=true;
if (isin==false) distinct.push_back(str[i]);
}
return distinct.size();
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (count_distinct_characters("") == 0);
assert (count_distinct_characters("abcde") == 5);
assert (count_distinct_characters("abcdecadeCADE") == 5);
assert (count_distinct_characters("aaaaAAAAaaaa") == 1);
assert (count_distinct_characters("Jerry jERRY JeRRRY") == 5);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int count_distinct_characters(string str){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (count_distinct_characters("xyzXYZ") == 3);
assert (count_distinct_characters("Jerry") == 4);
}
| vector<char> distinct={};
for (int i=0;i<str.size();i++)
{
bool isin=false;
for (int j=0;j<distinct.size();j++)
if (distinct[j]==str[i])
isin=true;
if (isin==false) distinct.push_back(str[i]);
}
return distinct.size();
}
| missing logic | incorrect output | count_distinct_characters | int count_distinct_characters(string str) | Given a string, find out how many distinct characters (regardless of case) does it consist of
>>> count_distinct_characters("xyzXYZ")
3
>>> count_distinct_characters("Jerry")
4 | Write a C++ function `int count_distinct_characters(string str)` to solve the following problem:
Given a string, find out how many distinct characters (regardless of case) does it consist of
>>> count_distinct_characters("xyzXYZ")
3
>>> count_distinct_characters("Jerry")
4 |
CPP/17 | /*
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return vector of integers corresponding to how many beats does each
not last.
Here is a legend:
"o" - whole note, lasts four beats
"o|" - half note, lasts two beats
".|" - quater note, lasts one beat
>>> parse_music("o o| .| o| o| .| .| .| .| o o")
{4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<int> parse_music(string music_string){
| string current="";
vector<int> out={};
if (music_string.length()>0)
music_string=music_string+' ';
for (int i=0;i<music_string.length();i++)
{
if (music_string[i]==' ')
{
if (current=="o") out.push_back(4);
if (current=="o|") out.push_back(2);
if (current==".|") out.push_back(1);
current="";
}
else current+=music_string[i];
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(parse_music("") , {}));
assert (issame(parse_music("o o o o") ,{4, 4, 4, 4}));
assert (issame(parse_music(".| .| .| .|") , {1, 1, 1, 1}));
assert (issame(parse_music("o| o| .| .| o o o o") , {2, 2, 1, 1, 4, 4, 4, 4}));
assert (issame(parse_music("o| .| o| .| o o| o o|") , {2, 1, 2, 1, 4, 2, 4, 2}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> parse_music(string music_string){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(parse_music("o o| .| o| o| .| .| .| .| o o") , {4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4}));
}
| string current="";
vector<int> out={};
if (music_string.length()>0)
music_string=music_string+' ';
for (int i=0;i<music_string.length();i++)
{
if (music_string[i]==' ')
{
if (current=="o") out.push_back(3);
if (current=="o|") out.push_back(2);
if (current==".|") out.push_back(1);
current="";
}
else current+=music_string[i];
}
return out;
}
| value misuse | incorrect output | parse_music | vector<int> parse_music(string music_string) | Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return vector of integers corresponding to how many beats does each
not last.
Here is a legend:
"o" - whole note, lasts four beats
"o|" - half note, lasts two beats
".|" - quater note, lasts one beat
>>> parse_music("o o| .| o| o| .| .| .| .| o o")
{4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4} | Write a C++ function `vector<int> parse_music(string music_string)` to solve the following problem:
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return vector of integers corresponding to how many beats does each
not last.
Here is a legend:
"o" - whole note, lasts four beats
"o|" - half note, lasts two beats
".|" - quater note, lasts one beat
>>> parse_music("o o| .| o| o| .| .| .| .| o o")
{4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4} |
CPP/18 | /*
Find how many times a given substring can be found in the original string. Count overlaping cases.
>>> how_many_times("", "a")
0
>>> how_many_times("aaa", "a")
3
>>> how_many_times("aaaa", "aa")
3
*/
#include<stdio.h>
#include<string>
using namespace std;
int how_many_times(string str,string substring){
| int out=0;
if (str.length()==0) return 0;
for (int i=0;i<=str.length()-substring.length();i++)
if (str.substr(i,substring.length())==substring)
out+=1;
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (how_many_times("", "x") == 0);
assert (how_many_times("xyxyxyx", "x") == 4);
assert (how_many_times("cacacacac", "cac") == 4);
assert (how_many_times("john doe", "john") == 1);
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int how_many_times(string str,string substring){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (how_many_times("", "a") == 0);
assert (how_many_times("aaa", "a") == 3);
assert (how_many_times("aaaa", "aa") == 3);
}
| int out=0;
if (str.length()==0) return 0;
for (int i=0;i<str.length()-substring.length();i++)
if (str.substr(i,substring.length())==substring)
out+=1;
return out;
}
| value misuse | incorrect output | how_many_times | int how_many_times(string str,string substring) | Find how many times a given substring can be found in the original string. Count overlaping cases.
>>> how_many_times("", "a")
0
>>> how_many_times("aaa", "a")
3
>>> how_many_times("aaaa", "aa")
3 | Write a C++ function `int how_many_times(string str,string substring)` to solve the following problem:
Find how many times a given substring can be found in the original string. Count overlaping cases.
>>> how_many_times("", "a")
0
>>> how_many_times("aaa", "a")
3
>>> how_many_times("aaaa", "aa")
3 |
CPP/19 | /*
Input is a space-delimited string of numberals from "zero" to "nine".
Valid choices are "zero", "one", 'two", 'three", "four", "five", 'six", 'seven", "eight" and "nine".
Return the string with numbers sorted from smallest to largest
>>> sort_numbers('three one five")
"one three five"
*/
#include<stdio.h>
#include<string>
#include<map>
using namespace std;
string sort_numbers(string numbers){
| map<string,int> tonum={{"zero",0},{"one",1},{"two",2},{"three",3},{"four",4},{"five",5},{"six",6},{"seven",7},{"eight",8},{"nine",9}};
map<int,string> numto={{0,"zero"},{1,"one"},{2,"two"},{3,"three"},{4,"four"},{5,"five"},{6,"six"},{7,"seven"},{8,"eight"},{9,"nine"}};
int count[10];
for (int i=0;i<10;i++)
count[i]=0;
string out="",current="";
if (numbers.length()>0) numbers=numbers+' ';
for (int i=0;i<numbers.length();i++)
if (numbers[i]==' ')
{
count[tonum[current]]+=1;
current="";
}
else current+=numbers[i];
for (int i=0;i<10;i++)
for (int j=0;j<count[i];j++)
out=out+numto[i]+' ';
if (out.length()>0) out.pop_back();
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (sort_numbers("") == "");
assert (sort_numbers("three") == "three");
assert (sort_numbers("three five nine") == "three five nine");
assert (sort_numbers("five zero four seven nine eight") == "zero four five seven eight nine");
assert (sort_numbers("six five four three two one zero") == "zero one two three four five six");
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<map>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string sort_numbers(string numbers){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (sort_numbers("three one five") == "one three five");
}
| map<string,int> tonum={{"zero",0},{"one",1},{"two",2},{"three",3},{"four",4},{"five",5},{"six",6},{"seven",7},{"eight",8},{"nine",9}};
map<int,string> numto={{0,"zero"},{1,"one"},{2,"two"},{3,"three"},{4,"four"},{5,"five"},{6,"six"},{7,"seven"},{8,"eight"},{9,"nine"}};
int count[10];
for (int i=0;i<10;i++)
count[i]=0;
string out="",current="";
if (numbers.length()>0) numbers=numbers+' ';
for (int i=0;i<numbers.length();i++)
if (numbers[i]==' ')
{
count[tonum[current]]+=1;
current="";
}
else current+=numbers[i];
for (int i=0;i<10;i++)
for (int j=0;j<count[i];j++)
out=out+numto[i]+' ';
return out;
}
| missing logic | incorrect output | sort_numbers | string sort_numbers(string numbers) | Input is a space-delimited string of numberals from "zero" to "nine".
Valid choices are "zero", "one", 'two", 'three", "four", "five", 'six", 'seven", "eight" and "nine".
Return the string with numbers sorted from smallest to largest
>>> sort_numbers('three one five")
"one three five" | Write a C++ function `string sort_numbers(string numbers)` to solve the following problem:
Input is a space-delimited string of numberals from "zero" to "nine".
Valid choices are "zero", "one", 'two", 'three", "four", "five", 'six", 'seven", "eight" and "nine".
Return the string with numbers sorted from smallest to largest
>>> sort_numbers('three one five")
"one three five" |
CPP/20 | /*
From a supplied vector of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2})
(2.0, 2.2)
>>> find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.0})
(2.0, 2.0)
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
vector<float> find_closest_elements(vector<float> numbers){
| vector<float> out={};
for (int i=0;i<numbers.size();i++)
for (int j=i+1;j<numbers.size();j++)
if (out.size()==0 or abs(numbers[i]-numbers[j])<abs(out[0]-out[1]))
out={numbers[i],numbers[j]};
if (out[0]>out[1])
out={out[1],out[0]};
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(find_closest_elements({1.0, 2.0, 3.9, 4.0, 5.0, 2.2}) , {3.9, 4.0}));
assert (issame(find_closest_elements({1.0, 2.0, 5.9, 4.0, 5.0}) , {5.0, 5.9} ));
assert (issame(find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2}) ,{2.0, 2.2}));
assert (issame(find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.0}) ,{2.0, 2.0}));
assert (issame(find_closest_elements({1.1, 2.2, 3.1, 4.1, 5.1}) , {2.2, 3.1}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<float> find_closest_elements(vector<float> numbers){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2}) ,{2.0, 2.2}));
assert (issame(find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.0}) ,{2.0, 2.0}));
}
| vector<float> out={};
for (int i=0;i<numbers.size();i++)
for (int j=i+1;j<numbers.size();j++)
if (out.size()==0 or abs(numbers[i]-numbers[j])>abs(out[0]-out[1]))
out={numbers[i],numbers[j]};
if (out[0]>out[1])
out={out[1],out[0]};
return out;
}
| operator misuse | incorrect output | find_closest_elements | vector<float> find_closest_elements(vector<float> numbers) | From a supplied vector of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2})
(2.0, 2.2)
>>> find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.0})
(2.0, 2.0) | Write a C++ function `vector<float> find_closest_elements(vector<float> numbers)` to solve the following problem:
From a supplied vector of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2})
(2.0, 2.2)
>>> find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.0})
(2.0, 2.0) |
CPP/21 | /*
Given vector of numbers (of at least two elements), apply a linear transform to that vector,
such that the smallest number will become 0 and the largest will become 1
>>> rescale_to_unit({1.0, 2.0, 3.0, 4.0, 5.0})
{0.0, 0.25, 0.5, 0.75, 1.0}
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
vector<float> rescale_to_unit(vector<float> numbers){
| float min=100000,max=-100000;
for (int i=0;i<numbers.size();i++)
{
if (numbers[i]<min) min=numbers[i];
if (numbers[i]>max) max=numbers[i];
}
for (int i=0;i<numbers.size();i++)
numbers[i]=(numbers[i]-min)/(max-min);
return numbers;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(rescale_to_unit({2.0, 49.9}) , {0.0, 1.0}));
assert (issame(rescale_to_unit({100.0, 49.9}) ,{1.0, 0.0}));
assert (issame(rescale_to_unit({1.0, 2.0, 3.0, 4.0, 5.0}) , {0.0, 0.25, 0.5, 0.75, 1.0}));
assert (issame(rescale_to_unit({2.0, 1.0, 5.0, 3.0, 4.0}) , {0.25, 0.0, 1.0, 0.5, 0.75}));
assert (issame(rescale_to_unit({12.0, 11.0, 15.0, 13.0, 14.0}) ,{0.25, 0.0, 1.0, 0.5, 0.75}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<float> rescale_to_unit(vector<float> numbers){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(rescale_to_unit({1.0, 2.0, 3.0, 4.0, 5.0}) , {0.0, 0.25, 0.5, 0.75, 1.0}));
}
| float min=100000,max=-100000;
for (int i=0;i<numbers.size();i++)
{
if (numbers[i]<min) min=numbers[i];
if (numbers[i]>max) max=numbers[i];
}
for (int i=0;i<numbers.size();i++)
numbers[i]=(numbers[i]-min)/(max+min);
return numbers;
}
| operator misuse | incorrect output | rescale_to_unit | vector<float> rescale_to_unit(vector<float> numbers) | Given vector of numbers (of at least two elements), apply a linear transform to that vector,
such that the smallest number will become 0 and the largest will become 1
>>> rescale_to_unit({1.0, 2.0, 3.0, 4.0, 5.0})
{0.0, 0.25, 0.5, 0.75, 1.0} | Write a C++ function `vector<float> rescale_to_unit(vector<float> numbers)` to solve the following problem:
Given vector of numbers (of at least two elements), apply a linear transform to that vector,
such that the smallest number will become 0 and the largest will become 1
>>> rescale_to_unit({1.0, 2.0, 3.0, 4.0, 5.0})
{0.0, 0.25, 0.5, 0.75, 1.0} |
CPP/22 | /*
Filter given vector of any python values only for integers
>>> filter_integers({"a", 3.14, 5})
{5}
>>> filter_integers({1, 2, 3, "abc", {}, {}})
{1, 2, 3}
*/
#include<stdio.h>
#include<vector>
#include<string>
#include<boost/any.hpp>
#include<list>
typedef std::list<boost::any> list_any;
using namespace std;
vector<int> filter_integers(list_any values){
| list_any::iterator it;
boost::any anyone;
vector<int> out;
for (it=values.begin();it!=values.end();it++)
{
anyone=*it;
if( anyone.type() == typeid(int) )
out.push_back(boost::any_cast<int>(*it));
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(filter_integers({}),{}));
assert (issame(filter_integers({4, {},23.2, 9, string("adasd")}) ,{4, 9}));
assert (issame(filter_integers({3, 'c', 3, 3, 'a', 'b'}) ,{3, 3, 3}));
} | #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<boost/any.hpp>
#include<list>
typedef std::list<boost::any> list_any;
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> filter_integers(list_any values){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(filter_integers({string("a"), 3.14, 5}),{5}));
assert (issame(filter_integers({1, 2, 3, string("abc"), {}, {}}),{1,2,3}));
}
| list_any::iterator it;
boost::any anyone;
vector<int> out;
for (it=values.begin();it!=values.end();it++)
{
anyone=*it;
if( anyone.type() == typeid(int) )
values.push_back(boost::any_cast<int>(*it));
}
return out;
}
| variable misuse | incorrect output | filter_integers | vector<int> filter_integers(list_any values) | Filter given vector of any python values only for integers
>>> filter_integers({"a", 3.14, 5})
{5}
>>> filter_integers({1, 2, 3, "abc", {}, {}})
{1, 2, 3} | Write a C++ function `vector<int> filter_integers(list_any values)` to solve the following problem:
Filter given vector of any python values only for integers
>>> filter_integers({"a", 3.14, 5})
{5}
>>> filter_integers({1, 2, 3, "abc", {}, {}})
{1, 2, 3} |
CPP/23 | /*
Return length of given string
>>> strlen("")
0
>>> strlen("abc")
3
*/
#include<stdio.h>
#include<string>
using namespace std;
int strlen(string str){
| return str.length();
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (strlen("") == 0);
assert (strlen("x") == 1);
assert (strlen("asdasnakj") == 9);
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int strlen(string str){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (strlen("") == 0);
assert (strlen("abc") == 3);
}
| return str.length() - 1;
}
| value misuse | incorrect output | strlen | int strlen(string str) | Return length of given string
>>> strlen("")
0
>>> strlen("abc")
3 | Write a C++ function `int strlen(string str)` to solve the following problem:
Return length of given string
>>> strlen("")
0
>>> strlen("abc")
3 |
CPP/24 | /*
For a given number n, find the largest number that divides n evenly, smaller than n
>>> largest_divisor(15)
5
*/
#include<stdio.h>
using namespace std;
int largest_divisor(int n){
| for (int i=2;i*i<=n;i++)
if (n%i==0) return n/i;
return 1;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (largest_divisor(3) == 1);
assert (largest_divisor(7) == 1);
assert (largest_divisor(10) == 5);
assert (largest_divisor(100) == 50);
assert (largest_divisor(49) == 7);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int largest_divisor(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (largest_divisor(15) == 5);
}
| for (int i=2;i*i<=n;i++)
if (n-i==0) return n/i;
return 1;
}
| operator misuse | incorrect output | largest_divisor | int largest_divisor(int n) | For a given number n, find the largest number that divides n evenly, smaller than n
>>> largest_divisor(15)
5 | Write a C++ function `int largest_divisor(int n)` to solve the following problem:
For a given number n, find the largest number that divides n evenly, smaller than n
>>> largest_divisor(15)
5 |
CPP/25 | /*
Return vector of prime factors of given integer in the order from smallest to largest.
Each of the factors should be vectored number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
>>> factorize(8)
{2, 2, 2}
>>> factorize(25)
{5, 5}
>>> factorize(70)
{2, 5, 7}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> factorize(int n){
| vector<int> out={};
for (int i=2;i*i<=n;i++)
if (n%i==0)
{
n=n/i;
out.push_back(i);
i-=1;
}
out.push_back(n);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(factorize(2) , {2}));
assert (issame(factorize(4) , {2, 2}));
assert (issame(factorize(8) , {2, 2, 2}));
assert (issame(factorize(3 * 19) , {3, 19}));
assert (issame(factorize(3 * 19 * 3 * 19) , {3, 3, 19, 19}));
assert (issame(factorize(3 * 19 * 3 * 19 * 3 * 19) , {3, 3, 3, 19, 19, 19}));
assert (issame(factorize(3 * 19 * 19 * 19) , {3, 19, 19, 19}));
assert (issame(factorize(3 * 2 * 3) , {2, 3, 3}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> factorize(int n){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(factorize(8) , {2, 2, 2}));
assert (issame(factorize(25) , {5,5}));
assert (issame(factorize(70) , {2,5,7}));
}
| vector<int> out={};
for (int i=0;i*i<=n;i++)
if (n%i==0)
{
n=n/i;
out.push_back(i);
i-=1;
}
out.push_back(n);
return out;
}
| value misuse | incorrect output | factorize | vector<int> factorize(int n) | Return vector of prime factors of given integer in the order from smallest to largest.
Each of the factors should be vectored number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
>>> factorize(8)
{2, 2, 2}
>>> factorize(25)
{5, 5}
>>> factorize(70)
{2, 5, 7} | Write a C++ function `vector<int> factorize(int n)` to solve the following problem:
Return vector of prime factors of given integer in the order from smallest to largest.
Each of the factors should be vectored number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
>>> factorize(8)
{2, 2, 2}
>>> factorize(25)
{5, 5}
>>> factorize(70)
{2, 5, 7} |
CPP/26 | /*
From a vector of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates({1, 2, 3, 2, 4})
{1, 3, 4}
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> remove_duplicates(vector<int> numbers){
| vector<int> out={};
vector<int> has1={};
vector<int> has2={};
for (int i=0;i<numbers.size();i++)
{
if (find(has2.begin(),has2.end(),numbers[i])!=has2.end()) continue;
if (find(has1.begin(),has1.end(),numbers[i])!=has1.end())
{
has2.push_back(numbers[i]);
}
else has1.push_back(numbers[i]);
}
for (int i=0;i<numbers.size();i++)
if (find(has2.begin(),has2.end(),numbers[i])==has2.end())
out.push_back(numbers[i]);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(remove_duplicates({}) , {}));
assert (issame(remove_duplicates({1, 2, 3, 4}) , {1, 2, 3, 4}));
assert (issame(remove_duplicates({1, 2, 3, 2, 4, 3, 5}) , {1, 4, 5}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> remove_duplicates(vector<int> numbers){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(remove_duplicates({1, 2, 3, 2,4}) , {1, 3, 4}));
}
| vector<int> out={};
vector<int> has1={};
vector<int> has2={};
for (int i=0;i<numbers.size();i++)
{
if (find(has2.begin(),has2.end(),numbers[i])!=has2.end()) continue;
if (find(has1.begin(),has1.end(),numbers[i])!=has1.end())
{
has2.push_back(numbers[i]);
}
else has1.push_back(numbers[i]);
}
for (int i=0;i<numbers.size();i++)
if (find(has2.begin(),has2.end(),numbers[i])!=has2.end())
out.push_back(numbers[i]);
return out;
}
| operator misuse | incorrect output | remove_duplicates | vector<int> remove_duplicates(vector<int> numbers) | From a vector of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates({1, 2, 3, 2, 4})
{1, 3, 4} | Write a C++ function `vector<int> remove_duplicates(vector<int> numbers)` to solve the following problem:
From a vector of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates({1, 2, 3, 2, 4})
{1, 3, 4} |
CPP/27 | /*
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
>>> flip_case("Hello")
"hELLO"
*/
#include<stdio.h>
#include<string>
using namespace std;
string flip_case(string str){
| string out="";
for (int i=0;i<str.length();i++)
{
char w=str[i];
if (w>=97 and w<=122) {w-=32;}
else
if (w>=65 and w<=90){ w+=32;}
out=out+w;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (flip_case("") == "");
assert (flip_case("Hello!") == "hELLO!");
assert (flip_case("These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS");
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string flip_case(string str){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (flip_case("Hello") == "hELLO");
}
| string out="";
for (int i=0;i<str.length();i++)
{
char w=str[i];
if (w>=97 and w<=122) {w+=32;}
else
if (w>=65 and w<=90){ w-=32;}
out=out+w;
}
return out;
}
| function misuse | incorrect output | flip_case | string flip_case(string str) | For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
>>> flip_case("Hello")
"hELLO" | Write a C++ function `string flip_case(string str)` to solve the following problem:
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
>>> flip_case("Hello")
"hELLO" |
CPP/28 | /*
Concatenate vector of strings into a single string
>>> concatenate({})
""
>>> concatenate({"a", "b", "c"})
"abc"
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
string concatenate(vector<string> strings){
| string out="";
for (int i=0;i<strings.size();i++)
out=out+strings[i];
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (concatenate({}) == "");
assert (concatenate({"x", "y", "z"}) == "xyz");
assert (concatenate({"x", "y", "z", "w", "k"}) == "xyzwk");
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string concatenate(vector<string> strings){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (concatenate({}) == "");
assert (concatenate({"a", "b", "c"}) == "abc");
}
| string out=" ";
for (int i=0;i<strings.size();i++)
out=out+strings[i];
return out;
}
| excess logic | incorrect output | concatenate | string concatenate(vector<string> strings) | Concatenate vector of strings into a single string
>>> concatenate({})
""
>>> concatenate({"a", "b", "c"})
"abc" | Write a C++ function `string concatenate(vector<string> strings)` to solve the following problem:
Concatenate vector of strings into a single string
>>> concatenate({})
""
>>> concatenate({"a", "b", "c"})
"abc" |
CPP/29 | /*
Filter an input vector of strings only for ones that start with a given prefix.
>>> filter_by_prefix({}, "a")
{}
>>> filter_by_prefix({"abc", "bcd", "cde", "vector"}, "a")
{"abc", "vector"}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<string> filter_by_prefix(vector<string> strings, string prefix){
| vector<string> out={};
for (int i=0;i<strings.size();i++)
if (strings[i].substr(0,prefix.length())==prefix) out.push_back(strings[i]);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(filter_by_prefix({}, "john") , {}));
assert (issame(filter_by_prefix({"xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"}, "xxx") , {"xxx", "xxxAAA", "xxx"}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<string> filter_by_prefix(vector<string> strings, string prefix){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(filter_by_prefix({}, "a") , {}));
assert (issame(filter_by_prefix({"abc", "bcd", "cde", "array"}, "a") , {"abc", "array"}));
}
| vector<string> out={};
for (int i=0;i<strings.size();i++)
if (strings[i].substr(0,prefix.length())!=prefix) out.push_back(strings[i]);
return out;
}
| function misuse | incorrect output | filter_by_prefix | vector<string> filter_by_prefix(vector<string> strings, string prefix) | Filter an input vector of strings only for ones that start with a given prefix.
>>> filter_by_prefix({}, "a")
{}
>>> filter_by_prefix({"abc", "bcd", "cde", "vector"}, "a")
{"abc", "vector"} | Write a C++ function `vector<string> filter_by_prefix(vector<string> strings, string prefix)` to solve the following problem:
Filter an input vector of strings only for ones that start with a given prefix.
>>> filter_by_prefix({}, "a")
{}
>>> filter_by_prefix({"abc", "bcd", "cde", "vector"}, "a")
{"abc", "vector"} |
CPP/30 | /*
Return only positive numbers in the vector.
>>> get_positive({-1, 2, -4, 5, 6})
{2, 5, 6}
>>> get_positive({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10})
{5, 3, 2, 3, 9, 123, 1}
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
vector<float> get_positive(vector<float> l){
| vector<float> out={};
for (int i=0;i<l.size();i++)
if (l[i]>0) out.push_back(l[i]);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(get_positive({-1, -2, 4, 5, 6}) , {4, 5, 6} ));
assert (issame(get_positive({5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10}) , {5, 3, 2, 3, 3, 9, 123, 1}));
assert (issame(get_positive({-1, -2}) , {} ));
assert (issame(get_positive({}) , {}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<float> get_positive(vector<float> l){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(get_positive({-1, 2, -4, 5, 6}) , {2, 5, 6} ));
assert (issame(get_positive({5, 3, -5, 2, -3,3, 9, 0, 123, 1, -10}) , {5, 3, 2, 3, 9, 123, 1}));
}
| vector<float> out={};
for (int i=0;i<l.size();i++)
if (l[i]<0) out.push_back(l[i]);
return out;
}
| operator misuse | incorrect output | get_positive | vector<float> get_positive(vector<float> l) | Return only positive numbers in the vector.
>>> get_positive({-1, 2, -4, 5, 6})
{2, 5, 6}
>>> get_positive({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10})
{5, 3, 2, 3, 9, 123, 1} | Write a C++ function `vector<float> get_positive(vector<float> l)` to solve the following problem:
Return only positive numbers in the vector.
>>> get_positive({-1, 2, -4, 5, 6})
{2, 5, 6}
>>> get_positive({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10})
{5, 3, 2, 3, 9, 123, 1} |
CPP/31 | /*
Return true if a given number is prime, and false otherwise.
>>> is_prime(6)
false
>>> is_prime(101)
true
>>> is_prime(11)
true
>>> is_prime(13441)
true
>>> is_prime(61)
true
>>> is_prime(4)
false
>>> is_prime(1)
false
*/
#include<stdio.h>
using namespace std;
bool is_prime(long long n){
| if (n<2) return false;
for (long long i=2;i*i<=n;i++)
if (n%i==0) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_prime(6) == false);
assert (is_prime(101) == true);
assert (is_prime(11) == true);
assert (is_prime(13441) == true);
assert (is_prime(61) == true);
assert (is_prime(4) == false);
assert (is_prime(1) == false);
assert (is_prime(5) == true);
assert (is_prime(11) == true);
assert (is_prime(17) == true);
assert (is_prime(5 * 17) == false);
assert (is_prime(11 * 7) == false);
assert (is_prime(13441 * 19) == false);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool is_prime(long long n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_prime(6) == false);
assert (is_prime(101) == true);
assert (is_prime(11) == true);
assert (is_prime(13441) == true);
assert (is_prime(61) == true);
assert (is_prime(4) == false);
assert (is_prime(1) == false);
}
| if (n<1) return false;
for (long long i=1;i*i<=n;i++)
if (n%i==0) return false;
return true;
}
| value misuse | incorrect output | is_prime | bool is_prime(long long n) | Return true if a given number is prime, and false otherwise.
>>> is_prime(6)
false
>>> is_prime(101)
true
>>> is_prime(11)
true
>>> is_prime(13441)
true
>>> is_prime(61)
true
>>> is_prime(4)
false
>>> is_prime(1)
false | Write a C++ function `bool is_prime(long long n)` to solve the following problem:
Return true if a given number is prime, and false otherwise.
>>> is_prime(6)
false
>>> is_prime(101)
true
>>> is_prime(11)
true
>>> is_prime(13441)
true
>>> is_prime(61)
true
>>> is_prime(4)
false
>>> is_prime(1)
false |
CPP/32 | #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
double poly(vector<double> xs, double x){
/*
Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n
*/
double sum=0;
int i;
for (i=0;i<xs.size();i++)
{
sum+=xs[i]*pow(x,i);
}
return sum;
}
double find_zero(vector<double> xs){
/*
xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many.
Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution.
>>> round(find_zero([1, 2]), 2) #f(x) = 1 + 2x
-0.5
>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3
1.0
*/
| double ans=0;
double value;
value=poly(xs,ans);
while (abs(value)>1e-6)
{
double driv=0;
for (int i=1;i<xs.size();i++)
{
driv+=xs[i]*pow(ans,i-1)*i;
}
ans=ans-value/driv;
value=poly(xs,ans);
}
return ans;
}
| #undef NDEBUG
#include<assert.h>
int main(){
double solution;
int ncoeff;
for (int i=0;i<100;i++)
{
ncoeff = 2 * (1+rand()%4);
vector<double> coeffs = {};
for (int j=0;j<ncoeff;j++)
{
double coeff = -10+rand()%21;
if (coeff == 0) coeff = 1;
coeffs.push_back(coeff);
}
solution = find_zero(coeffs);
assert (abs(poly(coeffs, solution))< 1e-3);
}
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
double poly(vector<double> xs, double x){
double sum=0;
int i;
for (i=0;i<xs.size();i++)
{
sum+=xs[i]*pow(x,i);
}
return sum;
}
double find_zero(vector<double> xs){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (find_zero({1,2})+0.5<1e-4);
assert (find_zero({-6,11,-6,1})-1<1e-4);
}
| double ans=0;
double value;
value=poly(xs,ans);
while (abs(value)>1e-6)
{
double driv=0;
for (int i=1;i<xs.size();i++)
{
driv+=xs[i]*pow(ans,i-1)*i;
}
ans=value-ans/driv;
value=poly(xs,ans);
}
return ans;
}
| variable misuse | incorrect output | find_zero | double find_zero(vector<double> xs) | xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many.
Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution.
>>> round(find_zero([1, 2]), 2) #f(x) = 1 + 2x
-0.5
>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3
1.0 | Write a C++ function `double find_zero(vector<double> xs)` to solve the following problem:
xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many.
Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution.
>>> round(find_zero([1, 2]), 2) #f(x) = 1 + 2x
-0.5
>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3
1.0 |
CPP/33 | /*
This function takes a vector l and returns a vector l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third({1, 2, 3})
{1, 2, 3}
>>> sort_third({5, 6, 3, 4, 8, 9, 2})
{2, 6, 3, 4, 8, 9, 5}
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> sort_third(vector<int> l){
| vector<int> third={};
int i;
for (i=0;i*3<l.size();i++)
third.push_back(l[i*3]);
sort(third.begin(),third.end());
vector<int> out={};
for (i=0;i<l.size();i++)
{
if (i%3==0) {out.push_back(third[i/3]);}
else out.push_back(l[i]);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sort_third({1, 2, 3}) , sort_third({1, 2, 3})));
assert (issame(sort_third({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10}) , sort_third({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10})));
assert (issame(sort_third({5, 8, -12, 4, 23, 2, 3, 11, 12, -10}) , sort_third({5, 8, -12, 4, 23, 2, 3, 11, 12, -10})));
assert (issame(sort_third({5, 6, 3, 4, 8, 9, 2}) , {2, 6, 3, 4, 8, 9, 5}));
assert (issame(sort_third({5, 8, 3, 4, 6, 9, 2}) , {2, 8, 3, 4, 6, 9, 5}));
assert (issame(sort_third({5, 6, 9, 4, 8, 3, 2}) , {2, 6, 9, 4, 8, 3, 5}));
assert (issame(sort_third({5, 6, 3, 4, 8, 9, 2, 1}) , {2, 6, 3, 4, 8, 9, 5, 1}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> sort_third(vector<int> l){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sort_third({1, 2, 3}) , {1, 2, 3}));
assert (issame(sort_third({5, 6, 3, 4, 8, 9, 2}) , {2, 6, 3, 4, 8, 9, 5}));
}
| vector<int> third={};
int i;
for (i=0;i*3<l.size();i++)
third.push_back(l[i*3]);
vector<int> out={};
for (i=0;i<l.size();i++)
{
if (i%3==0) {out.push_back(third[i/3]);}
else out.push_back(l[i]);
}
return out;
}
| missing logic | incorrect output | sort_third | vector<int> sort_third(vector<int> l) | This function takes a vector l and returns a vector l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third({1, 2, 3})
{1, 2, 3}
>>> sort_third({5, 6, 3, 4, 8, 9, 2})
{2, 6, 3, 4, 8, 9, 5} | Write a C++ function `vector<int> sort_third(vector<int> l)` to solve the following problem:
This function takes a vector l and returns a vector l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third({1, 2, 3})
{1, 2, 3}
>>> sort_third({5, 6, 3, 4, 8, 9, 2})
{2, 6, 3, 4, 8, 9, 5} |
CPP/34 | /*
Return sorted unique elements in a vector
>>> unique({5, 3, 5, 2, 3, 3, 9, 0, 123})
{0, 2, 3, 5, 9, 123}
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> unique(vector<int> l){
| vector<int> out={};
for (int i=0;i<l.size();i++)
if (find(out.begin(),out.end(),l[i])==out.end())
out.push_back(l[i]);
sort(out.begin(),out.end());
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(unique({5, 3, 5, 2, 3, 3, 9, 0, 123}) , {0, 2, 3, 5, 9, 123}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> unique(vector<int> l){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(unique({5, 3, 5, 2, 3, 3, 9, 0, 123}) , {0, 2, 3, 5, 9, 123}));
}
| sort(l.begin(),l.end());
return l;
}
| missing logic | incorrect output | unique | vector<int> unique(vector<int> l) | Return sorted unique elements in a vector
>>> unique({5, 3, 5, 2, 3, 3, 9, 0, 123})
{0, 2, 3, 5, 9, 123} | Write a C++ function `vector<int> unique(vector<int> l)` to solve the following problem:
Return sorted unique elements in a vector
>>> unique({5, 3, 5, 2, 3, 3, 9, 0, 123})
{0, 2, 3, 5, 9, 123} |
CPP/35 | /*
Return maximum element in the vector.
>>> max_element({1, 2, 3})
3
>>> max_element({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10})
123
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
float max_element(vector<float> l){
| float max=-10000;
for (int i=0;i<l.size();i++)
if (max<l[i]) max=l[i];
return max;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(max_element({1, 2, 3})- 3)<1e-4);
assert (abs(max_element({5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10})- 124)<1e-4);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
float max_element(vector<float> l){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(max_element({1, 2, 3})- 3)<1e-4);
assert (abs(max_element({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10})- 123)<1e-4);
}
| float max=-10000;
for (int i=0;i<l.size();i++)
if (max>l[i]) max=l[i];
return max;
}
| operator misuse | incorrect output | max_element | float max_element(vector<float> l) | Return maximum element in the vector.
>>> max_element({1, 2, 3})
3
>>> max_element({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10})
123 | Write a C++ function `float max_element(vector<float> l)` to solve the following problem:
Return maximum element in the vector.
>>> max_element({1, 2, 3})
3
>>> max_element({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10})
123 |
CPP/36 | /*
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3
*/
#include<stdio.h>
using namespace std;
int fizz_buzz(int n){
| int count=0;
for (int i=0;i<n;i++)
if (i%11==0 or i%13==0)
{
int q=i;
while (q>0)
{
if (q%10==7) count+=1;
q=q/10;
}
}
return count;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fizz_buzz(50) == 0);
assert (fizz_buzz(78) == 2);
assert (fizz_buzz(79) == 3);
assert (fizz_buzz(100) == 3);
assert (fizz_buzz(200) == 6);
assert (fizz_buzz(4000) == 192);
assert (fizz_buzz(10000) == 639);
assert (fizz_buzz(100000) == 8026);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int fizz_buzz(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fizz_buzz(50) == 0);
assert (fizz_buzz(78) == 2);
assert (fizz_buzz(79) == 3);
}
| int count=0;
for (int i=0;i<n;i++)
if (i%11==0 and i%13==0)
{
int q=i;
while (q>0)
{
if (q%10==7) count+=1;
q=q/10;
}
}
return count;
}
| operator misuse | incorrect output | fizz_buzz | int fizz_buzz(int n) | Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3 | Write a C++ function `int fizz_buzz(int n)` to solve the following problem:
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3 |
CPP/37 | /*
This function takes a vector l and returns a vector l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
>>> sort_even({1, 2, 3})
{1, 2, 3}
>>> sort_even({5, 6, 3, 4})
{3, 6, 5, 4}
*/
#include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<float> sort_even(vector<float> l){
| vector<float> out={};
vector<float> even={};
for (int i=0;i*2<l.size();i++)
even.push_back(l[i*2]);
sort(even.begin(),even.end());
for (int i=0;i<l.size();i++)
{
if (i%2==0) out.push_back(even[i/2]);
if (i%2==1) out.push_back(l[i]);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(sort_even({1, 2, 3}), {1, 2, 3}));
assert (issame(sort_even({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10}) , {-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123}));
assert (issame(sort_even({5, 8, -12, 4, 23, 2, 3, 11, 12, -10}) , {-12, 8, 3, 4, 5, 2, 12, 11, 23, -10}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<float> sort_even(vector<float> l){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(sort_even({1, 2, 3}), {1, 2, 3}));
assert (issame(sort_even({5, 6,3,4}) , {3,6,5,4}));
}
| vector<float> out={};
vector<float> even={};
for (int i=0;i*2<l.size();i++)
even.push_back(l[i*2]);
sort(l.begin(),l.end());
for (int i=0;i<l.size();i++)
{
if (i%2==0) out.push_back(even[i/2]);
if (i%2==1) out.push_back(l[i]);
}
return out;
}
| variable misuse | incorrect output | sort_even | vector<float> sort_even(vector<float> l) | This function takes a vector l and returns a vector l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
>>> sort_even({1, 2, 3})
{1, 2, 3}
>>> sort_even({5, 6, 3, 4})
{3, 6, 5, 4} | Write a C++ function `vector<float> sort_even(vector<float> l)` to solve the following problem:
This function takes a vector l and returns a vector l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
>>> sort_even({1, 2, 3})
{1, 2, 3}
>>> sort_even({5, 6, 3, 4})
{3, 6, 5, 4} |
CPP/38 | #include<stdio.h>
#include<string>
using namespace std;
string encode_cyclic(string s){
// returns encoded string by cycling groups of three characters.
// split string to groups. Each of length 3.
int l=s.length();
int num=(l+2)/3;
string x,output;
int i;
for (i=0;i*3<l;i++)
{
//cycle elements in each group. Unless group has fewer elements than 3.
x=s.substr(i*3,3);
if (x.length()==3) x=x.substr(1)+x[0];
output=output+x;
}
return output;
}
string decode_cyclic(string s){
/*
takes as input string encoded with encode_cyclic function. Returns decoded string.
*/
| int l=s.length();
int num=(l+2)/3;
string x,output;
int i;
for (i=0;i*3<l;i++)
{
x=s.substr(i*3,3);
if (x.length()==3) x=x[2]+x.substr(0,2);
output=output+x;
}
return output;
}
| #undef NDEBUG
#include<assert.h>
int main(){
for (int i=0;i<100;i++)
{
int l=10+rand()%11;
string str="";
for (int j=0;j<l;j++)
{
char chr=97+rand()%26;
str+=chr;
}
string encoded_str = encode_cyclic(str);
assert (decode_cyclic(encoded_str) == str);
}
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string encode_cyclic(string s){
int l=s.length();
int num=(l+2)/3;
string x,output;
int i;
for (i=0;i*3<l;i++)
{
x=s.substr(i*3,3);
if (x.length()==3) x=x.substr(1)+x[0];
output=output+x;
}
return output;
}
string decode_cyclic(string s){
int l=s.length();
int num=(l+2)/3;
string x,output;
int i;
for (i=0;i*3<l;i++)
{
| int l=s.length();
int num=(l+2)/3;
string x,output;
int i;
for (i=0;i*3<l;i++)
{
x=s.substr(i*3,3);
output=output+x;
}
return output;
}
| missing logic | incorrect output | decode_cyclic | string decode_cyclic(string s) | takes as input string encoded with encode_cyclic function. Returns decoded string. | Write a C++ function `string decode_cyclic(string s)` to solve the following problem:
takes as input string encoded with encode_cyclic function. Returns decoded string. |
|
CPP/39 | /*
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89
*/
#include<stdio.h>
using namespace std;
int prime_fib(int n){
| int f1,f2,m;
f1=1;f2=2;
int count=0;
while (count<n)
{
f1=f1+f2;
m=f1;f1=f2;f2=m;
bool isprime=true;
for (int w=2;w*w<=f1;w++)
if (f1%w==0)
{
isprime=false; break;
}
if (isprime) count+=1;
if (count==n) return f1;
}
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (prime_fib(1) == 2);
assert (prime_fib(2) == 3);
assert (prime_fib(3) == 5);
assert (prime_fib(4) == 13);
assert (prime_fib(5) == 89);
assert (prime_fib(6) == 233);
assert (prime_fib(7) == 1597);
assert (prime_fib(8) == 28657);
assert (prime_fib(9) == 514229);
assert (prime_fib(10) == 433494437);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int prime_fib(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (prime_fib(1) == 2);
assert (prime_fib(2) == 3);
assert (prime_fib(3) == 5);
assert (prime_fib(4) == 13);
assert (prime_fib(5) == 89);
}
| int f1,f2,m;
f1=1;f2=2;
int count=0;
while (count<n)
{
f1=f1+f2;
m=f1;f1=f2;f2=m;
bool isprime=true;
for (int w=1;w*w<f1;w++)
if (f1%w==0)
{
isprime=false; break;
}
if (isprime) count+=1;
if (count==n) return f1;
}
}
| value misuse | incorrect output | prime_fib | int prime_fib(int n) | prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89 | Write a C++ function `int prime_fib(int n)` to solve the following problem:
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89 |
CPP/40 | /*
triples_sum_to_zero takes a vector of integers as an input.
it returns true if there are three distinct elements in the vector that
sum to zero, and false otherwise.
>>> triples_sum_to_zero({1, 3, 5, 0})
false
>>> triples_sum_to_zero({1, 3, -2, 1})
true
>>> triples_sum_to_zero({1, 2, 3, 7})
false
>>> triples_sum_to_zero({2, 4, -5, 3, 9, 7})
true
>>> triples_sum_to_zero({1})
false
*/
#include<stdio.h>
#include<vector>
using namespace std;
bool triples_sum_to_zero(vector<int> l){
| for (int i=0;i<l.size();i++)
for (int j=i+1;j<l.size();j++)
for (int k=j+1;k<l.size();k++)
if (l[i]+l[j]+l[k]==0) return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (triples_sum_to_zero({1, 3, 5, 0}) == false);
assert (triples_sum_to_zero({1, 3, 5, -1}) == false);
assert (triples_sum_to_zero({1, 3, -2, 1}) == true);
assert (triples_sum_to_zero({1, 2, 3, 7}) == false);
assert (triples_sum_to_zero({1, 2, 5, 7}) == false);
assert (triples_sum_to_zero({2, 4, -5, 3, 9, 7}) == true);
assert (triples_sum_to_zero({1}) == false);
assert (triples_sum_to_zero({1, 3, 5, -100}) == false);
assert (triples_sum_to_zero({100, 3, 5, -100}) == false);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
bool triples_sum_to_zero(vector<int> l){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (triples_sum_to_zero({1, 3, 5, 0}) == false);
assert (triples_sum_to_zero({1, 3, -2, 1}) == true);
assert (triples_sum_to_zero({1, 2, 3, 7}) == false);
assert (triples_sum_to_zero({2, 4, -5, 3, 9, 7}) == true);
}
| for (int i=1;i<l.size();i++)
for (int j=i+1;j<l.size();j++)
for (int k=j+1;k<l.size();k++)
if (l[i]+l[j]+l[k]==0) return true;
return false;
}
| value misuse | incorrect output | triples_sum_to_zero | bool triples_sum_to_zero(vector<int> l) | triples_sum_to_zero takes a vector of integers as an input.
it returns true if there are three distinct elements in the vector that
sum to zero, and false otherwise.
>>> triples_sum_to_zero({1, 3, 5, 0})
false
>>> triples_sum_to_zero({1, 3, -2, 1})
true
>>> triples_sum_to_zero({1, 2, 3, 7})
false
>>> triples_sum_to_zero({2, 4, -5, 3, 9, 7})
true
>>> triples_sum_to_zero({1})
false | Write a C++ function `bool triples_sum_to_zero(vector<int> l)` to solve the following problem:
triples_sum_to_zero takes a vector of integers as an input.
it returns true if there are three distinct elements in the vector that
sum to zero, and false otherwise.
>>> triples_sum_to_zero({1, 3, 5, 0})
false
>>> triples_sum_to_zero({1, 3, -2, 1})
true
>>> triples_sum_to_zero({1, 2, 3, 7})
false
>>> triples_sum_to_zero({2, 4, -5, 3, 9, 7})
true
>>> triples_sum_to_zero({1})
false |
CPP/41 | /*
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
*/
#include<stdio.h>
using namespace std;
int car_race_collision(int n){
| return n*n;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (car_race_collision(2) == 4);
assert (car_race_collision(3) == 9);
assert (car_race_collision(4) == 16);
assert (car_race_collision(8) == 64);
assert (car_race_collision(10) == 100);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int car_race_collision(int n){
| return n*n*n;
}
| value misuse | incorrect output | car_race_collision | int car_race_collision(int n) | Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. | Write a C++ function `int car_race_collision(int n)` to solve the following problem:
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. |
|
CPP/42 | /*
Return vector with elements incremented by 1.
>>> incr_vector({1, 2, 3})
{2, 3, 4}
>>> incr_vector({5, 3, 5, 2, 3, 3, 9, 0, 123})
{6, 4, 6, 3, 4, 4, 10, 1, 124}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> incr_list(vector<int> l){
| for (int i=0;i<l.size();i++)
l[i]+=1;
return l;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(incr_list({}) , {}));
assert (issame(incr_list({3, 2, 1}) , {4, 3, 2}));
assert (issame(incr_list({5, 2, 5, 2, 3, 3, 9, 0, 123}) , {6, 3, 6, 3, 4, 4, 10, 1, 124}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> incr_list(vector<int> l){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(incr_list({1, 2, 3}) , {2, 3, 4}));
assert (issame(incr_list({5, 2, 5, 2, 3, 3, 9, 0, 123}) , {6, 3, 6, 3, 4, 4, 10, 1, 124}));
}
| for (int i=0;i<l.size();i++)
l[i]+=2;
return l;
}
| value misuse | incorrect output | incr_list | vector<int> incr_list(vector<int> l) | Return vector with elements incremented by 1.
>>> incr_vector({1, 2, 3})
{2, 3, 4}
>>> incr_vector({5, 3, 5, 2, 3, 3, 9, 0, 123})
{6, 4, 6, 3, 4, 4, 10, 1, 124} | Write a C++ function `vector<int> incr_list(vector<int> l)` to solve the following problem:
Return vector with elements incremented by 1.
>>> incr_vector({1, 2, 3})
{2, 3, 4}
>>> incr_vector({5, 3, 5, 2, 3, 3, 9, 0, 123})
{6, 4, 6, 3, 4, 4, 10, 1, 124} |
CPP/43 | /*
pairs_sum_to_zero takes a vector of integers as an input.
it returns true if there are two distinct elements in the vector that
sum to zero, and false otherwise.
>>> pairs_sum_to_zero({1, 3, 5, 0})
false
>>> pairs_sum_to_zero({1, 3, -2, 1})
false
>>> pairs_sum_to_zero({1, 2, 3, 7})
false
>>> pairs_sum_to_zero({2, 4, -5, 3, 5, 7})
true
>>> pairs_sum_to_zero({1})
false
*/
#include<stdio.h>
#include<vector>
using namespace std;
bool pairs_sum_to_zero(vector<int> l){
| for (int i=0;i<l.size();i++)
for (int j=i+1;j<l.size();j++)
if (l[i]+l[j]==0) return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (pairs_sum_to_zero({1, 3, 5, 0}) == false);
assert (pairs_sum_to_zero({1, 3, -2, 1}) == false);
assert (pairs_sum_to_zero({1, 2, 3, 7}) == false);
assert (pairs_sum_to_zero({2, 4, -5, 3, 5, 7}) == true);
assert (pairs_sum_to_zero({1}) == false);
assert (pairs_sum_to_zero({-3, 9, -1, 3, 2, 30}) == true);
assert (pairs_sum_to_zero({-3, 9, -1, 3, 2, 31}) == true);
assert (pairs_sum_to_zero({-3, 9, -1, 4, 2, 30}) == false);
assert (pairs_sum_to_zero({-3, 9, -1, 4, 2, 31}) == false);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool pairs_sum_to_zero(vector<int> l){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (pairs_sum_to_zero({1, 3, 5, 0}) == false);
assert (pairs_sum_to_zero({1, 3, -2, 1}) == false);
assert (pairs_sum_to_zero({1, 2, 3, 7}) == false);
assert (pairs_sum_to_zero({2, 4, -5, 3, 5, 7}) == true);
}
| for (int i=0;i<l.size();i++)
for (int j=i;j<l.size();j++)
if (l[i]+l[j]==0) return true;
return false;
}
| value misuse | incorrect output | pairs_sum_to_zero | bool pairs_sum_to_zero(vector<int> l) | pairs_sum_to_zero takes a vector of integers as an input.
it returns true if there are two distinct elements in the vector that
sum to zero, and false otherwise.
>>> pairs_sum_to_zero({1, 3, 5, 0})
false
>>> pairs_sum_to_zero({1, 3, -2, 1})
false
>>> pairs_sum_to_zero({1, 2, 3, 7})
false
>>> pairs_sum_to_zero({2, 4, -5, 3, 5, 7})
true
>>> pairs_sum_to_zero({1})
false | Write a C++ function `bool pairs_sum_to_zero(vector<int> l)` to solve the following problem:
pairs_sum_to_zero takes a vector of integers as an input.
it returns true if there are two distinct elements in the vector that
sum to zero, and false otherwise.
>>> pairs_sum_to_zero({1, 3, 5, 0})
false
>>> pairs_sum_to_zero({1, 3, -2, 1})
false
>>> pairs_sum_to_zero({1, 2, 3, 7})
false
>>> pairs_sum_to_zero({2, 4, -5, 3, 5, 7})
true
>>> pairs_sum_to_zero({1})
false |
CPP/44 | /*
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
"22"
>>> change_base(8, 2)
"1000"
>>> change_base(7, 2)
"111"
*/
#include<stdio.h>
#include<string>
using namespace std;
string change_base(int x,int base){
| string out="";
while (x>0)
{
out=to_string(x%base)+out;
x=x/base;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (change_base(8, 3) == "22");
assert (change_base(9, 3) == "100");
assert (change_base(234, 2) == "11101010");
assert (change_base(16, 2) == "10000");
assert (change_base(8, 2) == "1000");
assert (change_base(7, 2) == "111");
for (int x=2;x<8;x++)
assert (change_base(x, x + 1) == to_string(x));
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string change_base(int x,int base){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (change_base(8, 3) == "22");
assert (change_base(8, 2) == "1000");
assert (change_base(7, 2) == "111");
}
| string out="";
while (x>0)
{
out=to_string(x%base)+out;
x=x-base;
}
return out;
}
| operator misuse | infinite loop | change_base | string change_base(int x,int base) | Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
"22"
>>> change_base(8, 2)
"1000"
>>> change_base(7, 2)
"111" | Write a C++ function `string change_base(int x,int base)` to solve the following problem:
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
"22"
>>> change_base(8, 2)
"1000"
>>> change_base(7, 2)
"111" |
CPP/45 | /*
Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
*/
#include<stdio.h>
#include<math.h>
using namespace std;
float triangle_area(float a,float h){
| return (a*h)*0.5;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(triangle_area(5, 3) - 7.5)<1e-4);
assert (abs(triangle_area(2, 2) - 2.0)<1e-4);
assert (abs(triangle_area(10, 8) - 40.0)<1e-4);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
float triangle_area(float a,float h){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(triangle_area(5, 3) - 7.5)<1e-4);
}
| return (a*h)*2;
}
| value misuse | incorrect output | triangle_area | float triangle_area(float a,float h) | Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5 | Write a C++ function `float triangle_area(float a,float h)` to solve the following problem:
Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5 |
CPP/46 | /*
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
*/
#include<stdio.h>
using namespace std;
int fib4(int n){
| int f[100];
f[0]=0;
f[1]=0;
f[2]=2;
f[3]=0;
for (int i=4;i<=n;i++)
{
f[i]=f[i-1]+f[i-2]+f[i-3]+f[i-4];
}
return f[n];
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fib4(5) == 4);
assert (fib4(8) == 28);
assert (fib4(10) == 104);
assert (fib4(12) == 386);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int fib4(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fib4(5) == 4);
assert (fib4(6) == 8);
assert (fib4(7) == 14);
}
| int f[100];
f[0]=0;
f[1]=0;
f[2]=2;
f[3]=0;
for (int i=4;i<=n;i++)
{
f[i]=f[i-1]+f[i-2]+f[i-3]+f[i-2];
}
return f[n];
}
| value misuse | incorrect output | fib4 | int fib4(int n) | The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14 | Write a C++ function `int fib4(int n)` to solve the following problem:
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14 |
CPP/47 | /*
Return median of elements in the vector l.
>>> median({3, 1, 2, 4, 5})
3
>>> median({-10, 4, 6, 1000, 10, 20})
15.0
*/
#include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
float median(vector<float> l){
| sort(l.begin(),l.end());
if (l.size()%2==1) return l[l.size()/2];
return 0.5*(l[l.size()/2]+l[l.size()/2-1]);
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(median({3, 1, 2, 4, 5}) - 3)<1e-4);
assert (abs(median({-10, 4, 6, 1000, 10, 20}) -8.0)<1e-4);
assert (abs(median({5}) - 5)<1e-4);
assert (abs(median({6, 5}) - 5.5)<1e-4);
assert (abs(median({8, 1, 3, 9, 9, 2, 7}) - 7)<1e-4 );
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
float median(vector<float> l){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(median({3, 1, 2, 4, 5}) - 3)<1e-4);
assert (abs(median({-10, 4, 6, 1000, 10, 20}) -8.0)<1e-4);
}
| sort(l.begin(),l.end());
if (l.size()%2==1) return l[l.size()/2];
return 0.5*(l[l.size()/2]+l[l.size()-1/2]);
}
| value misuse | incorrect output | median | float median(vector<float> l) | Return median of elements in the vector l.
>>> median({3, 1, 2, 4, 5})
3
>>> median({-10, 4, 6, 1000, 10, 20})
15.0 | Write a C++ function `float median(vector<float> l)` to solve the following problem:
Return median of elements in the vector l.
>>> median({3, 1, 2, 4, 5})
3
>>> median({-10, 4, 6, 1000, 10, 20})
15.0 |
CPP/48 | /*
Checks if given string is a palindrome
>>> is_palindrome("")
true
>>> is_palindrome("aba")
true
>>> is_palindrome("aaaaa")
true
>>> is_palindrome("zbcd")
false
*/
#include<stdio.h>
#include<string>
using namespace std;
bool is_palindrome(string text){
| string pr(text.rbegin(),text.rend());
return pr==text;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_palindrome("") == true);
assert (is_palindrome("aba") == true);
assert (is_palindrome("aaaaa") == true);
assert (is_palindrome("zbcd") == false);
assert (is_palindrome("xywyx") == true);
assert (is_palindrome("xywyz") == false);
assert (is_palindrome("xywzx") == false);
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool is_palindrome(string text){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_palindrome("") == true);
assert (is_palindrome("aba") == true);
assert (is_palindrome("aaaaa") == true);
assert (is_palindrome("zbcd") == false);
}
| string pr(text.rend(),text.rbegin());
return pr==text;
}
| value misuse | incorrect output | is_palindrome | bool is_palindrome(string text) | Checks if given string is a palindrome
>>> is_palindrome("")
true
>>> is_palindrome("aba")
true
>>> is_palindrome("aaaaa")
true
>>> is_palindrome("zbcd")
false | Write a C++ function `bool is_palindrome(string text)` to solve the following problem:
Checks if given string is a palindrome
>>> is_palindrome("")
true
>>> is_palindrome("aba")
true
>>> is_palindrome("aaaaa")
true
>>> is_palindrome("zbcd")
false |
CPP/49 | /*
Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1
*/
#include<stdio.h>
using namespace std;
int modp(int n,int p){
| int out=1;
for (int i=0;i<n;i++)
out=(out*2)%p;
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (modp(3, 5) == 3);
assert (modp(1101, 101) == 2);
assert (modp(0, 101) == 1);
assert (modp(3, 11) == 8);
assert (modp(100, 101) == 1);
assert (modp(30, 5) == 4);
assert (modp(31, 5) == 3);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int modp(int n,int p){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (modp(3, 5) == 3);
assert (modp(1101, 101) == 2);
assert (modp(0, 101) == 1);
assert (modp(3, 11) == 8);
assert (modp(100, 101) == 1);
}
| int out=0;
for (int i=0;i<n;i++)
out=(out*2)%p;
return out;
}
| value misuse | incorrect output | modp | int modp(int n,int p) | Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1 | Write a C++ function `int modp(int n,int p)` to solve the following problem:
Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1 |
CPP/50 | #include<stdio.h>
#include<string>
using namespace std;
string encode_shift(string s){
// returns encoded string by shifting every character by 5 in the alphabet.
string out;
int i;
for (i=0;i<s.length();i++)
{
int w=((int)s[i]+5-(int)'a')%26+(int)'a';
out=out+(char)w;
}
return out;
}
string decode_shift(string s){
// takes as input string encoded with encode_shift function. Returns decoded string.
| string out;
int i;
for (i=0;i<s.length();i++)
{
int w=((int)s[i]+21-(int)'a')%26+(int)'a';
out=out+(char)w;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
for (int i=0;i<100;i++)
{
int l=10+rand()%11;
string str="";
for (int j=0;j<l;j++)
{
char chr=97+rand()%26;
str+=chr;
}
string encoded_str = encode_shift(str);
assert (decode_shift(encoded_str) == str);
}
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string encode_shift(string s){
string out;
int i;
for (i=0;i<s.length();i++)
{
int w=((int)s[i]+5-(int)'a')%26+(int)'a';
out=out+(char)w;
}
return out;
}
string decode_shift(string s){
| string out;
int i;
for (i=0;i<s.length();i++)
{
int w=((int)s[i]+21-(int)'a')%26+(int)s[i];
out=out+(char)w;
}
return out;
}
| variable misuse | incorrect output | decode_shift | string decode_shift(string s) | takes as input string encoded with encode_shift function. Returns decoded string. | Write a C++ function `string decode_shift(string s)` to solve the following problem:
takes as input string encoded with encode_shift function. Returns decoded string. |
|
CPP/51 | /*
remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels("")
""
>>> remove_vowels("abcdef\nghijklm")
"bcdf\nghjklm"
>>> remove_vowels("abcdef")
"bcdf"
>>> remove_vowels("aaaaa")
""
>>> remove_vowels("aaBAA")
"B"
>>> remove_vowels("zbcd")
"zbcd"
*/
#include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
string remove_vowels(string text){
| string out="";
string vowels="AEIOUaeiou";
for (int i=0;i<text.length();i++)
if (find(vowels.begin(),vowels.end(),text[i])==vowels.end())
out=out+text[i];
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (remove_vowels("") == "");
assert (remove_vowels("abcdef\nghijklm") == "bcdf\nghjklm");
assert (remove_vowels("fedcba") == "fdcb");
assert (remove_vowels("eeeee") == "");
assert (remove_vowels("acBAA") == "cB");
assert (remove_vowels("EcBOO") == "cB");
assert (remove_vowels("ybcd") == "ybcd");
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
string remove_vowels(string text){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (remove_vowels("") == "");
assert (remove_vowels("abcdef\nghijklm") == "bcdf\nghjklm");
assert (remove_vowels("abcdef") == "bcdf");
assert (remove_vowels("aaaaa") == "");
assert (remove_vowels("aaBAA") == "B");
assert (remove_vowels("zbcd") == "zbcd");
}
| string out="";
string vowels="AEIOUWYaeiouwy";
for (int i=0;i<text.length();i++)
if (find(vowels.begin(),vowels.end(),text[i])==vowels.end())
out=out+text[i];
return out;
}
| excess logic | incorrect output | remove_vowels | string remove_vowels(string text) | remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels("")
""
>>> remove_vowels("abcdef\nghijklm")
"bcdf\nghjklm"
>>> remove_vowels("abcdef")
"bcdf"
>>> remove_vowels("aaaaa")
""
>>> remove_vowels("aaBAA")
"B"
>>> remove_vowels("zbcd")
"zbcd" | Write a C++ function `string remove_vowels(string text)` to solve the following problem:
remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels("")
""
>>> remove_vowels("abcdef\nghijklm")
"bcdf\nghjklm"
>>> remove_vowels("abcdef")
"bcdf"
>>> remove_vowels("aaaaa")
""
>>> remove_vowels("aaBAA")
"B"
>>> remove_vowels("zbcd")
"zbcd" |
CPP/52 | /*
Return true if all numbers in the vector l are below threshold t.
>>> below_threshold({1, 2, 4, 10}, 100)
true
>>> below_threshold({1, 20, 4, 10}, 5)
false
*/
#include<stdio.h>
#include<vector>
using namespace std;
bool below_threshold(vector<int>l, int t){
| for (int i=0;i<l.size();i++)
if (l[i]>=t) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (below_threshold({1, 2, 4, 10}, 100));
assert (not(below_threshold({1, 20, 4, 10}, 5)));
assert (below_threshold({1, 20, 4, 10}, 21));
assert (below_threshold({1, 20, 4, 10}, 22));
assert (below_threshold({1, 8, 4, 10}, 11));
assert (not(below_threshold({1, 8, 4, 10}, 10)));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool below_threshold(vector<int>l, int t){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (below_threshold({1, 2, 4, 10}, 100));
assert (not(below_threshold({1, 20, 4, 10}, 5)));
}
| for (int i=0;i<l.size();i++)
if (l[i]>=t) return true;
return false;
}
| operator misuse | incorrect output | below_threshold | bool below_threshold(vector<int>l, int t) | Return true if all numbers in the vector l are below threshold t.
>>> below_threshold({1, 2, 4, 10}, 100)
true
>>> below_threshold({1, 20, 4, 10}, 5)
false | Write a C++ function `bool below_threshold(vector<int>l, int t)` to solve the following problem:
Return true if all numbers in the vector l are below threshold t.
>>> below_threshold({1, 2, 4, 10}, 100)
true
>>> below_threshold({1, 20, 4, 10}, 5)
false |
CPP/53 | /*
Add two numbers x and y
>>> add(2, 3)
5
>>> add(5, 7)
12
*/
#include<stdio.h>
#include<stdlib.h>
using namespace std;
int add(int x,int y){
| return x+y;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (add(0, 1) == 1);
assert (add(1, 0) == 1);
assert (add(2, 3) == 5);
assert (add(5, 7) == 12);
assert (add(7, 5) == 12);
for (int i=0;i<100;i+=1)
{
int x=rand()%1000;
int y=rand()%1000;
assert (add(x, y) == x + y);
}
}
| #include<stdio.h>
#include<stdlib.h>
using namespace std;
#include<algorithm>
#include<math.h>
int add(int x,int y){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (add(2, 3) == 5);
assert (add(5, 7) == 12);
}
| return x+y+y+x;
}
| excess logic | incorrect output | add | int add(int x,int y) | Add two numbers x and y
>>> add(2, 3)
5
>>> add(5, 7)
12 | Write a C++ function `int add(int x,int y)` to solve the following problem:
Add two numbers x and y
>>> add(2, 3)
5
>>> add(5, 7)
12 |
CPP/54 | /*
Check if two words have the same characters.
>>> same_chars("eabcdzzzz", "dddzzzzzzzddeddabc")
true
>>> same_chars("abcd", "dddddddabc")
true
>>> same_chars("dddddddabc", "abcd")
true
>>> same_chars("eabcd", "dddddddabc")
false
>>> same_chars("abcd", "dddddddabce")
false
>>> same_chars("eabcdzzzz", "dddzzzzzzzddddabc")
false
*/
#include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
bool same_chars(string s0,string s1){
| for (int i=0;i<s0.length();i++)
if (find(s1.begin(),s1.end(),s0[i])==s1.end())
return false;
for (int i=0;i<s1.length();i++)
if (find(s0.begin(),s0.end(),s1[i])==s0.end())
return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (same_chars("eabcdzzzz", "dddzzzzzzzddeddabc") == true);
assert (same_chars("abcd", "dddddddabc") == true);
assert (same_chars("dddddddabc", "abcd") == true);
assert (same_chars("eabcd", "dddddddabc") == false);
assert (same_chars("abcd", "dddddddabcf") == false);
assert (same_chars("eabcdzzzz", "dddzzzzzzzddddabc") == false);
assert (same_chars("aabb", "aaccc") == false);
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
bool same_chars(string s0,string s1){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (same_chars("eabcdzzzz", "dddzzzzzzzddeddabc") == true);
assert (same_chars("abcd", "dddddddabc") == true);
assert (same_chars("dddddddabc", "abcd") == true);
assert (same_chars("eabcd", "dddddddabc") == false);
assert (same_chars("abcd", "dddddddabcf") == false);
assert (same_chars("eabcdzzzz", "dddzzzzzzzddddabc") == false);
}
| for (int i=0;i<s0.length();i++)
if (find(s1.begin(),s1.end(),s0[i])==s1.end())
return false;
return true;
}
| missing logic | incorrect output | same_chars | bool same_chars(string s0,string s1) | Check if two words have the same characters.
>>> same_chars("eabcdzzzz", "dddzzzzzzzddeddabc")
true
>>> same_chars("abcd", "dddddddabc")
true
>>> same_chars("dddddddabc", "abcd")
true
>>> same_chars("eabcd", "dddddddabc")
false
>>> same_chars("abcd", "dddddddabce")
false
>>> same_chars("eabcdzzzz", "dddzzzzzzzddddabc")
false | Write a C++ function `bool same_chars(string s0,string s1)` to solve the following problem:
Check if two words have the same characters.
>>> same_chars("eabcdzzzz", "dddzzzzzzzddeddabc")
true
>>> same_chars("abcd", "dddddddabc")
true
>>> same_chars("dddddddabc", "abcd")
true
>>> same_chars("eabcd", "dddddddabc")
false
>>> same_chars("abcd", "dddddddabce")
false
>>> same_chars("eabcdzzzz", "dddzzzzzzzddddabc")
false |
CPP/55 | /*
Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21
*/
#include<stdio.h>
using namespace std;
int fib(int n){
| int f[1000];
f[0]=0;f[1]=1;
for (int i=2;i<=n; i++)
f[i]=f[i-1]+f[i-2];
return f[n];
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fib(10) == 55);
assert (fib(1) == 1);
assert (fib(8) == 21);
assert (fib(11) == 89);
assert (fib(12) == 144);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int fib(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fib(10) == 55);
assert (fib(1) == 1);
assert (fib(8) == 21);
}
| int f[1000];
f[0]=0;f[1]=1;f[2]=2;
for (int i=3;i<=n; i++)
f[i]=f[i-1]+f[i-2];
return f[n];
}
| excess logic | incorrect output | fib | int fib(int n) | Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21 | Write a C++ function `int fib(int n)` to solve the following problem:
Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21 |
CPP/56 | /*
brackets is a string of '<' and '>'.
return true if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("<")
false
>>> correct_bracketing("<>")
true
>>> correct_bracketing("<<><>>")
true
>>> correct_bracketing("><<>")
false
*/
#include<stdio.h>
#include<string>
using namespace std;
bool correct_bracketing(string brackets){
| int level=0;
for (int i=0;i<brackets.length();i++)
{
if (brackets[i]=='<') level+=1;
if (brackets[i]=='>') level-=1;
if (level<0) return false;
}
if (level!=0) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (correct_bracketing("<>"));
assert (correct_bracketing("<<><>>"));
assert (correct_bracketing("<><><<><>><>"));
assert (correct_bracketing("<><><<<><><>><>><<><><<>>>"));
assert (not (correct_bracketing("<<<><>>>>")));
assert (not (correct_bracketing("><<>")));
assert (not (correct_bracketing("<")));
assert (not (correct_bracketing("<<<<")));
assert (not (correct_bracketing(">")));
assert (not (correct_bracketing("<<>")));
assert (not (correct_bracketing("<><><<><>><>><<>")));
assert (not (correct_bracketing("<><><<><>><>>><>")));
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool correct_bracketing(string brackets){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (correct_bracketing("<>"));
assert (correct_bracketing("<<><>>"));
assert (not (correct_bracketing("><<>")));
assert (not (correct_bracketing("<")));
}
| int level=0;
for (int i=0;i<brackets.length();i++)
{
if (brackets[i]=='>') level+=1;
if (brackets[i]=='<') level-=1;
if (level<0) return false;
}
if (level!=0) return false;
return true;
}
| operator misuse | incorrect output | correct_bracketing | bool correct_bracketing(string brackets) | brackets is a string of '<' and '>'.
return true if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("<")
false
>>> correct_bracketing("<>")
true
>>> correct_bracketing("<<><>>")
true
>>> correct_bracketing("><<>")
false | Write a C++ function `bool correct_bracketing(string brackets)` to solve the following problem:
brackets is a string of '<' and '>'.
return true if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("<")
false
>>> correct_bracketing("<>")
true
>>> correct_bracketing("<<><>>")
true
>>> correct_bracketing("><<>")
false |
CPP/57 | /*
Return true is vector elements are monotonically increasing or decreasing.
>>> monotonic({1, 2, 4, 20})
true
>>> monotonic({1, 20, 4, 10})
false
>>> monotonic({4, 1, 0, -10})
true
*/
#include<stdio.h>
#include<vector>
using namespace std;
bool monotonic(vector<float> l){
| int incr,decr;
incr=0;decr=0;
for (int i=1;i<l.size();i++)
{
if (l[i]>l[i-1]) incr=1;
if (l[i]<l[i-1]) decr=1;
}
if (incr+decr==2) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (monotonic({1, 2, 4, 10}) == true);
assert (monotonic({1, 2, 4, 20}) == true);
assert (monotonic({1, 20, 4, 10}) == false);
assert (monotonic({4, 1, 0, -10}) == true);
assert (monotonic({4, 1, 1, 0}) == true);
assert (monotonic({1, 2, 3, 2, 5, 60}) == false);
assert (monotonic({1, 2, 3, 4, 5, 60}) == true);
assert (monotonic({9, 9, 9, 9}) == true);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool monotonic(vector<float> l){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (monotonic({1, 2, 4, 10}) == true);
assert (monotonic({1, 20, 4, 10}) == false);
assert (monotonic({4, 1, 0, -10}) == true);
}
| int incr,decr;
incr=0;decr=0;
for (int i=1;i<l.size();i++)
{
if (l[i]>l[i-1]) incr=1;
if (l[i]<l[i-1]) decr=1;
}
if (incr+decr==2) return true;
return false;
}
| operator misuse | incorrect output | monotonic | bool monotonic(vector<float> l) | Return true is vector elements are monotonically increasing or decreasing.
>>> monotonic({1, 2, 4, 20})
true
>>> monotonic({1, 20, 4, 10})
false
>>> monotonic({4, 1, 0, -10})
true | Write a C++ function `bool monotonic(vector<float> l)` to solve the following problem:
Return true is vector elements are monotonically increasing or decreasing.
>>> monotonic({1, 2, 4, 20})
true
>>> monotonic({1, 20, 4, 10})
false
>>> monotonic({4, 1, 0, -10})
true |
CPP/58 | /*
Return sorted unique common elements for two vectors.
>>> common({1, 4, 3, 34, 653, 2, 5}, {5, 7, 1, 5, 9, 653, 121})
{1, 5, 653}
>>> common({5, 3, 2, 8}, {3, 2})
{2, 3}
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> common(vector<int> l1,vector<int> l2){
| vector<int> out={};
for (int i=0;i<l1.size();i++)
if (find(out.begin(),out.end(),l1[i])==out.end())
if (find(l2.begin(),l2.end(),l1[i])!=l2.end())
out.push_back(l1[i]);
sort(out.begin(),out.end());
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(common({1, 4, 3, 34, 653, 2, 5}, {5, 7, 1, 5, 9, 653, 121}) , {1, 5, 653}));
assert (issame(common({5, 3, 2, 8}, {3, 2}) , {2, 3}));
assert (issame(common({4, 3, 2, 8}, {3, 2, 4}) , {2, 3, 4}));
assert (issame(common({4, 3, 2, 8}, {}) , {}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> common(vector<int> l1,vector<int> l2){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(common({1, 4, 3, 34, 653, 2, 5}, {5, 7, 1, 5, 9, 653, 121}) , {1, 5, 653}));
assert (issame(common({5, 3, 2, 8}, {3, 2}) , {2, 3}));
}
| vector<int> out={};
for (int i=0;i<l1.size();i++)
if (find(out.begin(),out.end(),l1[i])==out.end())
out.push_back(l1[i]);
sort(out.begin(),out.end());
return out;
}
| missing logic | incorrect output | common | vector<int> common(vector<int> l1,vector<int> l2) | Return sorted unique common elements for two vectors.
>>> common({1, 4, 3, 34, 653, 2, 5}, {5, 7, 1, 5, 9, 653, 121})
{1, 5, 653}
>>> common({5, 3, 2, 8}, {3, 2})
{2, 3} | Write a C++ function `vector<int> common(vector<int> l1,vector<int> l2)` to solve the following problem:
Return sorted unique common elements for two vectors.
>>> common({1, 4, 3, 34, 653, 2, 5}, {5, 7, 1, 5, 9, 653, 121})
{1, 5, 653}
>>> common({5, 3, 2, 8}, {3, 2})
{2, 3} |
CPP/59 | /*
Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2
*/
#include<stdio.h>
using namespace std;
int largest_prime_factor(int n){
| for (int i=2;i*i<=n;i++)
while (n%i==0 and n>i) n=n/i;
return n;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (largest_prime_factor(15) == 5);
assert (largest_prime_factor(27) == 3);
assert (largest_prime_factor(63) == 7);
assert (largest_prime_factor(330) == 11);
assert (largest_prime_factor(13195) == 29);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int largest_prime_factor(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (largest_prime_factor(2048) == 2);
assert (largest_prime_factor(13195) == 29);
}
| for (int i=2;i*i<=n;i++)
while (n%i==0 and n>i) n=i/n;
return n;
}
| variable misuse | incorrect output | largest_prime_factor | int largest_prime_factor(int n) | Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2 | Write a C++ function `int largest_prime_factor(int n)` to solve the following problem:
Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2 |
CPP/60 | /*
sum_to_n is a function that sums numbers from 1 to n.
>>> sum_to_n(30)
465
>>> sum_to_n(100)
5050
>>> sum_to_n(5)
15
>>> sum_to_n(10)
55
>>> sum_to_n(1)
1
*/
#include<stdio.h>
using namespace std;
int sum_to_n(int n){
| return n*(n+1)/2;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (sum_to_n(1) == 1);
assert (sum_to_n(6) == 21);
assert (sum_to_n(11) == 66);
assert (sum_to_n(30) == 465);
assert (sum_to_n(100) == 5050);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int sum_to_n(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (sum_to_n(1) == 1);
assert (sum_to_n(5) == 15);
assert (sum_to_n(10) == 55);
assert (sum_to_n(30) == 465);
assert (sum_to_n(100) == 5050);
}
| return n*n/2;
}
| value misuse | incorrect output | sum_to_n | int sum_to_n(int n) | sum_to_n is a function that sums numbers from 1 to n.
>>> sum_to_n(30)
465
>>> sum_to_n(100)
5050
>>> sum_to_n(5)
15
>>> sum_to_n(10)
55
>>> sum_to_n(1)
1 | Write a C++ function `int sum_to_n(int n)` to solve the following problem:
sum_to_n is a function that sums numbers from 1 to n.
>>> sum_to_n(30)
465
>>> sum_to_n(100)
5050
>>> sum_to_n(5)
15
>>> sum_to_n(10)
55
>>> sum_to_n(1)
1 |
CPP/61 | /*
brackets is a string of '(' and ')'.
return true if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("(")
false
>>> correct_bracketing("()")
true
>>> correct_bracketing("(()())")
true
>>> correct_bracketing(")(()")
false
*/
#include<stdio.h>
#include<string>
using namespace std;
bool correct_bracketing(string brackets){
| int level=0;
for (int i=0;i<brackets.length();i++)
{
if (brackets[i]=='(') level+=1;
if (brackets[i]==')') level-=1;
if (level<0) return false;
}
if (level!=0) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (correct_bracketing("()"));
assert (correct_bracketing("(()())"));
assert (correct_bracketing("()()(()())()"));
assert (correct_bracketing("()()((()()())())(()()(()))"));
assert (not (correct_bracketing("((()())))")));
assert (not (correct_bracketing(")(()")));
assert (not (correct_bracketing("(")));
assert (not (correct_bracketing("((((")));
assert (not (correct_bracketing(")")));
assert (not (correct_bracketing("(()")));
assert (not (correct_bracketing("()()(()())())(()")));
assert (not (correct_bracketing("()()(()())()))()")));
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool correct_bracketing(string brackets){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (correct_bracketing("()"));
assert (correct_bracketing("(()())"));
assert (not (correct_bracketing(")(()")));
assert (not (correct_bracketing("(")));
}
| int level=0;
for (int i=0;i<brackets.length();i++)
{
if (brackets[i]=='(') level+=1;
if (brackets[i]==')') level-=1;
if (level<0) return true;
}
if (level!=0) return false;
return true;
}
| operator misuse | incorrect output | correct_bracketing | bool correct_bracketing(string brackets) | brackets is a string of '(' and ')'.
return true if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("(")
false
>>> correct_bracketing("()")
true
>>> correct_bracketing("(()())")
true
>>> correct_bracketing(")(()")
false | Write a C++ function `bool correct_bracketing(string brackets)` to solve the following problem:
brackets is a string of '(' and ')'.
return true if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("(")
false
>>> correct_bracketing("()")
true
>>> correct_bracketing("(()())")
true
>>> correct_bracketing(")(()")
false |
CPP/62 | /*
xs represent coefficients of a polynomial.
xs{0} + xs{1} * x + xs{2} * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative({3, 1, 2, 4, 5})
{1, 4, 12, 20}
>>> derivative({1, 2, 3})
{2, 6}
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
vector<float> derivative(vector<float> xs){
| vector<float> out={};
for (int i=1;i<xs.size();i++)
out.push_back(i*xs[i]);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(derivative({3, 1, 2, 4, 5}) , {1, 4, 12, 20}));
assert (issame(derivative({1, 2, 3}) , {2, 6}));
assert (issame(derivative({3, 2, 1}) , {2, 2}));
assert (issame(derivative({3, 2, 1, 0, 4}) , {2, 2, 0, 16}));
assert (issame(derivative({1}) , {}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<float> derivative(vector<float> xs){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<float> a,vector<float>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (abs(a[i]-b[i])>1e-4) return false;
}
return true;
}
int main(){
assert (issame(derivative({3, 1, 2, 4, 5}) , {1, 4, 12, 20}));
assert (issame(derivative({1, 2, 3}) , {2, 6}));
}
| vector<float> out={};
for (int i=0;i<xs.size();i++)
out.push_back(i*xs[i]);
return out;
}
| value misuse | incorrect output | derivative | vector<float> derivative(vector<float> xs) | xs represent coefficients of a polynomial.
xs{0} + xs{1} * x + xs{2} * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative({3, 1, 2, 4, 5})
{1, 4, 12, 20}
>>> derivative({1, 2, 3})
{2, 6} | Write a C++ function `vector<float> derivative(vector<float> xs)` to solve the following problem:
xs represent coefficients of a polynomial.
xs{0} + xs{1} * x + xs{2} * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative({3, 1, 2, 4, 5})
{1, 4, 12, 20}
>>> derivative({1, 2, 3})
{2, 6} |
CPP/63 | /*
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
>>> fibfib(1)
0
>>> fibfib(5)
4
>>> fibfib(8)
24
*/
#include<stdio.h>
using namespace std;
int fibfib(int n){
| int ff[100];
ff[0]=0;
ff[1]=0;
ff[2]=1;
for (int i=3;i<=n;i++)
ff[i]=ff[i-1]+ff[i-2]+ff[i-3];
return ff[n];
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fibfib(2) == 1);
assert (fibfib(1) == 0);
assert (fibfib(5) == 4);
assert (fibfib(8) == 24);
assert (fibfib(10) == 81);
assert (fibfib(12) == 274);
assert (fibfib(14) == 927);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int fibfib(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fibfib(1) == 0);
assert (fibfib(5) == 4);
assert (fibfib(8) == 24);
}
| int ff[100];
ff[0]=0;
ff[1]=1;
ff[2]=2;
for (int i=3;i<=n;i++)
ff[i]=ff[i-1]+ff[i-2]+ff[i-3];
return ff[n];
}
| value misuse | incorrect output | fibfib | int fibfib(int n) | The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
>>> fibfib(1)
0
>>> fibfib(5)
4
>>> fibfib(8)
24 | Write a C++ function `int fibfib(int n)` to solve the following problem:
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
>>> fibfib(1)
0
>>> fibfib(5)
4
>>> fibfib(8)
24 |
CPP/64 | /*
Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'.
Here, 'y' is also a vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count("abcde")
2
>>> vowels_count("ACEDY")
3
*/
#include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
int vowels_count(string s){
| string vowels="aeiouAEIOU";
int count=0;
for (int i=0;i<s.length();i++)
if (find(vowels.begin(),vowels.end(),s[i])!=vowels.end())
count+=1;
if (s[s.length()-1]=='y' or s[s.length()-1]=='Y') count+=1;
return count;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (vowels_count("abcde") == 2);
assert (vowels_count("Alone") == 3);
assert (vowels_count("key") == 2);
assert (vowels_count("bye") == 1);
assert (vowels_count("keY") == 2);
assert (vowels_count("bYe") == 1);
assert (vowels_count("ACEDY") == 3);
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int vowels_count(string s){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (vowels_count("abcde") == 2);
assert (vowels_count("ACEDY") == 3);
}
| string vowels="aeiouyAEIOUY";
int count=0;
for (int i=0;i<s.length();i++)
if (find(vowels.begin(),vowels.end(),s[i])!=vowels.end())
count+=1;
return count;
}
| missing logic | incorrect output | vowels_count | int vowels_count(string s) | Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'.
Here, 'y' is also a vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count("abcde")
2
>>> vowels_count("ACEDY")
3 | Write a C++ function `int vowels_count(string s)` to solve the following problem:
Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'.
Here, 'y' is also a vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count("abcde")
2
>>> vowels_count("ACEDY")
3 |
CPP/65 | /*
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
"21"
>>> circular_shift(12, 2)
"12"
*/
#include<stdio.h>
#include<string>
using namespace std;
string circular_shift(int x,int shift){
| string xs;
xs=to_string(x);
if (xs.length()<shift)
{
string s(xs.rbegin(),xs.rend());
return s;
}
xs=xs.substr(xs.length()-shift)+xs.substr(0,xs.length()-shift);
return xs;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (circular_shift(100, 2) == "001");
assert (circular_shift(12, 2) == "12");
assert (circular_shift(97, 8) == "79");
assert (circular_shift(12, 1) == "21");
assert (circular_shift(11, 101) == "11");
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string circular_shift(int x,int shift){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (circular_shift(12, 2) == "12");
assert (circular_shift(12, 1) == "21");
}
| string xs;
xs=to_string(x);
if (xs.length()<shift)
{
string s(xs.rbegin(),xs.rend());
return s;
}
xs=xs.substr(0,xs.length()-shift)+xs.substr(xs.length()-shift);
return xs;
}
| variable misuse | incorrect output | circular_shift | string circular_shift(int x,int shift) | Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
"21"
>>> circular_shift(12, 2)
"12" | Write a C++ function `string circular_shift(int x,int shift)` to solve the following problem:
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
"21"
>>> circular_shift(12, 2)
"12" |
CPP/66 | /*
Task
Write a function that takes a string as input and returns the sum of the upper characters only's
ASCII codes.
Examples:
digitSum("") => 0
digitSum("abAB") => 131
digitSum("abcCd") => 67
digitSum("helloE") => 69
digitSum("woArBld") => 131
digitSum("aAaaaXa") => 153
*/
#include<stdio.h>
#include<string>
using namespace std;
int digitSum(string s){
| int sum=0;
for (int i=0;i<s.length();i++)
if (s[i]>=65 and s[i]<=90)
sum+=s[i];
return sum;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (digitSum("") == 0);
assert (digitSum("abAB") == 131);
assert (digitSum("abcCd") == 67);
assert (digitSum("helloE") == 69);
assert (digitSum("woArBld") == 131);
assert (digitSum("aAaaaXa") == 153);
assert (digitSum(" How are yOu?") == 151);
assert (digitSum("You arE Very Smart") == 327);
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int digitSum(string s){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (digitSum("") == 0);
assert (digitSum("abAB") == 131);
assert (digitSum("abcCd") == 67);
assert (digitSum("helloE") == 69);
assert (digitSum("woArBld") == 131);
assert (digitSum("aAaaaXa") == 153);
}
| int sum=0;
for (int i=0;i<s.length();i++)
if (s[i]>=65 and s[i]<=100)
sum+=s[i];
return sum;
}
| function misuse | incorrect output | digitSum | int digitSum(string s) | Task
Write a function that takes a string as input and returns the sum of the upper characters only's
ASCII codes.
Examples:
digitSum("") => 0
digitSum("abAB") => 131
digitSum("abcCd") => 67
digitSum("helloE") => 69
digitSum("woArBld") => 131
digitSum("aAaaaXa") => 153 | Write a C++ function `int digitSum(string s)` to solve the following problem:
Task
Write a function that takes a string as input and returns the sum of the upper characters only's
ASCII codes.
Examples:
digitSum("") => 0
digitSum("abAB") => 131
digitSum("abcCd") => 67
digitSum("helloE") => 69
digitSum("woArBld") => 131
digitSum("aAaaaXa") => 153 |
CPP/67 | /*
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for example:
fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8
fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2
fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95
fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19
*/
#include<stdio.h>
#include<string>
using namespace std;
int fruit_distribution(string s,int n){
| string num1="",num2="";
int is12;
is12=0;
for (int i=0;i<s.size();i++)
if (s[i]>=48 and s[i]<=57)
{
if (is12==0) num1=num1+s[i];
if (is12==1) num2=num2+s[i];
}
else
if (is12==0 and num1.length()>0) is12=1;
return n-atoi(num1.c_str())-atoi(num2.c_str());
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fruit_distribution("5 apples and 6 oranges",19) == 8);
assert (fruit_distribution("5 apples and 6 oranges",21) == 10);
assert (fruit_distribution("0 apples and 1 oranges",3) == 2);
assert (fruit_distribution("1 apples and 0 oranges",3) == 2);
assert (fruit_distribution("2 apples and 3 oranges",100) == 95);
assert (fruit_distribution("2 apples and 3 oranges",5) == 0);
assert (fruit_distribution("1 apples and 100 oranges",120) == 19);
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int fruit_distribution(string s,int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fruit_distribution("5 apples and 6 oranges",19) == 8);
assert (fruit_distribution("0 apples and 1 oranges",3) == 2);
assert (fruit_distribution("2 apples and 3 oranges",100) == 95);
assert (fruit_distribution("1 apples and 100 oranges",120) == 19);
}
| string num1="",num2="";
int is12;
is12=0;
for (int i=0;i<s.size();i++)
if (s[i]>=48 and s[i]<=57)
{
if (is12==0) num1=num1+s[i];
if (is12==1) num2=num2+s[i];
}
else
if (is12==0 and num1.length()>0) is12=1;
return n-1-atoi(num1.c_str())-atoi(num2.c_str());
}
| value misuse | incorrect output | fruit_distribution | int fruit_distribution(string s,int n) | In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for example:
fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8
fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2
fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95
fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 | Write a C++ function `int fruit_distribution(string s,int n)` to solve the following problem:
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for example:
fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8
fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2
fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95
fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 |
CPP/68 | /*
Given a vector representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a vector, { smalest_value, its index },
If there are no even values or the given vector is empty, return {}.
Example 1:
Input: {4,2,3}
Output: {2, 1}
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Input: {1,2,3}
Output: {2, 1}
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Input: {}
Output: {}
Example 4:
Input: {5, 0, 3, 0, 4, 2}
Output: {0, 1}
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> pluck(vector<int> arr){
| vector<int> out={};
for (int i=0;i<arr.size();i++)
if (arr[i]%2==0 and (out.size()==0 or arr[i]<out[0]))
out={arr[i],i};
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(pluck({4,2,3}) , {2, 1}));
assert (issame(pluck({1,2,3}) , {2, 1}));
assert (issame(pluck({}) , {}));
assert (issame(pluck({5, 0, 3, 0, 4, 2}) , {0, 1}));
assert (issame(pluck({1, 2, 3, 0, 5, 3}) , {0, 3}));
assert (issame(pluck({5, 4, 8, 4 ,8}) , {4, 1}));
assert (issame(pluck({7, 6, 7, 1}) , {6, 1}));
assert (issame(pluck({7, 9, 7, 1}) , {}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> pluck(vector<int> arr){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(pluck({4,2,3}) , {2, 1}));
assert (issame(pluck({1,2,3}) , {2, 1}));
assert (issame(pluck({}) , {}));
assert (issame(pluck({5, 0, 3, 0, 4, 2}) , {0, 1}));
}
| vector<int> out={};
for (int i=0;i<arr.size();i++)
if (arr[i]%2==0 and (out.size()==0 or arr[i]<out[0]))
out={i,arr[i]};
return out;
}
| variable misuse | incorrect output | pluck | vector<int> pluck(vector<int> arr) | Given a vector representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a vector, { smalest_value, its index },
If there are no even values or the given vector is empty, return {}.
Example 1:
Input: {4,2,3}
Output: {2, 1}
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Input: {1,2,3}
Output: {2, 1}
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Input: {}
Output: {}
Example 4:
Input: {5, 0, 3, 0, 4, 2}
Output: {0, 1}
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value | Write a C++ function `vector<int> pluck(vector<int> arr)` to solve the following problem:
Given a vector representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a vector, { smalest_value, its index },
If there are no even values or the given vector is empty, return {}.
Example 1:
Input: {4,2,3}
Output: {2, 1}
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Input: {1,2,3}
Output: {2, 1}
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Input: {}
Output: {}
Example 4:
Input: {5, 0, 3, 0, 4, 2}
Output: {0, 1}
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value |
CPP/69 | /*
You are given a non-empty vector of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the vector.
If no such a value exist, return -1.
Examples:
search({4, 1, 2, 2, 3, 1}) == 2
search({1, 2, 2, 3, 3, 3, 4, 4, 4}) == 3
search({5, 5, 4, 4, 4}) == -1
*/
#include<stdio.h>
#include<vector>
using namespace std;
int search(vector<int> lst){
| vector<vector<int>> freq={};
int max=-1;
for (int i=0;i<lst.size();i++)
{
bool has=false;
for (int j=0;j<freq.size();j++)
if (lst[i]==freq[j][0])
{
freq[j][1]+=1;
has=true;
if (freq[j][1]>=freq[j][0] and freq[j][0]>max) max=freq[j][0];
}
if (not(has))
{
freq.push_back({lst[i],1});
if (max==-1 and lst[i]==1) max=1;
}
}
return max;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (search({5, 5, 5, 5, 1}) == 1);
assert (search({4, 1, 4, 1, 4, 4}) == 4);
assert (search({3, 3}) == -1);
assert (search({8, 8, 8, 8, 8, 8, 8, 8}) == 8);
assert (search({2, 3, 3, 2, 2}) == 2);
assert (search({2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1}) == 1);
assert (search({3, 2, 8, 2}) == 2);
assert (search({6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10}) == 1);
assert (search({8, 8, 3, 6, 5, 6, 4}) == -1);
assert (search({6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9}) == 1);
assert (search({1, 9, 10, 1, 3}) == 1);
assert (search({6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10}) == 5);
assert (search({1}) == 1);
assert (search({8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5}) == 4);
assert (search({2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10}) == 2);
assert (search({1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3}) == 1);
assert (search({9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4}) == 4);
assert (search({2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7}) == 4);
assert (search({9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1}) == 2);
assert (search({5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8}) == -1);
assert (search({10}) == -1);
assert (search({9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2}) == 2);
assert (search({5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8}) == 1);
assert (search({7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6}) == 1);
assert (search({3, 10, 10, 9, 2}) == -1);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int search(vector<int> lst){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (search({4, 1, 2, 2, 3, 1}) == 2);
assert (search({1, 2, 2, 3, 3, 3, 4, 4, 4}) == 3);
assert (search({5, 5, 4, 4, 4}) == -1);
}
| vector<vector<int>> freq={};
int max=0;
for (int i=0;i<lst.size();i++)
{
bool has=false;
for (int j=0;j<freq.size();j++)
if (lst[i]==freq[j][0])
{
freq[j][1]+=1;
has=true;
if (freq[j][1]>=freq[j][0] and freq[j][0]>max) max=freq[j][0];
}
if (not(has))
{
freq.push_back({lst[i],1});
if (max==-1 and lst[i]==1) max=1;
}
}
return max;
}
| value misuse | incorrect output | search | int search(vector<int> lst) | You are given a non-empty vector of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the vector.
If no such a value exist, return -1.
Examples:
search({4, 1, 2, 2, 3, 1}) == 2
search({1, 2, 2, 3, 3, 3, 4, 4, 4}) == 3
search({5, 5, 4, 4, 4}) == -1 | Write a C++ function `int search(vector<int> lst)` to solve the following problem:
You are given a non-empty vector of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the vector.
If no such a value exist, return -1.
Examples:
search({4, 1, 2, 2, 3, 1}) == 2
search({1, 2, 2, 3, 3, 3, 4, 4, 4}) == 3
search({5, 5, 4, 4, 4}) == -1 |
CPP/70 | /*
Given vector of integers, return vector in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strange_sort_vector({1, 2, 3, 4}) == {1, 4, 2, 3}
strange_sort_vector({5, 5, 5, 5}) == {5, 5, 5, 5}
strange_sort_vector({}) == {}
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> strange_sort_list(vector<int> lst){
| vector<int> out={};
sort(lst.begin(),lst.end());
int l=0,r=lst.size()-1;
while (l<r)
{
out.push_back(lst[l]);
l+=1;
out.push_back(lst[r]);
r-=1;
}
if (l==r) out.push_back(lst[l]);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(strange_sort_list({1, 2, 3, 4}) , {1, 4, 2, 3}));
assert (issame(strange_sort_list({5, 6, 7, 8, 9}) , {5, 9, 6, 8, 7}));
assert (issame(strange_sort_list({1, 2, 3, 4, 5}) , {1, 5, 2, 4, 3}));
assert (issame(strange_sort_list({5, 6, 7, 8, 9, 1}) , {1, 9, 5, 8, 6, 7}));
assert (issame(strange_sort_list({5, 5, 5, 5}) , {5, 5, 5, 5}));
assert (issame(strange_sort_list({}) , {}));
assert (issame(strange_sort_list({1,2,3,4,5,6,7,8}) , {1, 8, 2, 7, 3, 6, 4, 5}));
assert (issame(strange_sort_list({0,2,2,2,5,5,-5,-5}) , {-5, 5, -5, 5, 0, 2, 2, 2}));
assert (issame(strange_sort_list({111111}) , {111111}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> strange_sort_list(vector<int> lst){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(strange_sort_list({1, 2, 3, 4}) , {1, 4, 2, 3}));
assert (issame(strange_sort_list({5, 5, 5, 5}) , {5, 5, 5, 5}));
assert (issame(strange_sort_list({}) , {}));
}
| vector<int> out={};
sort(lst.begin(),lst.end());
int l=0,r=lst.size()-1;
while (l<r)
{
out.push_back(lst[l]);
l+=2;
out.push_back(lst[r]);
r-=2;
}
if (l==r) out.push_back(lst[l]);
return out;
}
| operator misuse | incorrect output | strange_sort_list | vector<int> strange_sort_list(vector<int> lst) | Given vector of integers, return vector in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strange_sort_vector({1, 2, 3, 4}) == {1, 4, 2, 3}
strange_sort_vector({5, 5, 5, 5}) == {5, 5, 5, 5}
strange_sort_vector({}) == {} | Write a C++ function `vector<int> strange_sort_list(vector<int> lst)` to solve the following problem:
Given vector of integers, return vector in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strange_sort_vector({1, 2, 3, 4}) == {1, 4, 2, 3}
strange_sort_vector({5, 5, 5, 5}) == {5, 5, 5, 5}
strange_sort_vector({}) == {} |
CPP/71 | /*
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangle_area(3, 4, 5) == 6.00
triangle_area(1, 2, 10) == -1
*/
#include<stdio.h>
#include<math.h>
using namespace std;
float triangle_area(float a,float b,float c){
| if (a+b<=c or a+c<=b or b+c<=a) return -1;
float h=(a+b+c)/2;
float area;
area=pow(h*(h-a)*(h-b)*(h-c),0.5);
return area;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(triangle_area(3, 4, 5)-6.00)<0.01);
assert (abs(triangle_area(1, 2, 10) +1)<0.01);
assert (abs(triangle_area(4, 8, 5) -8.18)<0.01);
assert (abs(triangle_area(2, 2, 2) -1.73)<0.01);
assert (abs(triangle_area(1, 2, 3) +1)<0.01);
assert (abs(triangle_area(10, 5, 7) - 16.25)<0.01);
assert (abs(triangle_area(2, 6, 3) +1)<0.01);
assert (abs(triangle_area(1, 1, 1) -0.43)<0.01);
assert (abs(triangle_area(2, 2, 10) +1)<0.01);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
float triangle_area(float a,float b,float c){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (abs(triangle_area(3, 4, 5)-6.00)<0.01);
assert (abs(triangle_area(1, 2, 10) +1)<0.01);
}
| if (a+b<=c or a+c<=b or b+c<=a) return -1;
float h=(a+b+c);
float area;
area=pow(h*(h-a)*(h-b)*(h-c),0.5);
return area;
}
| missing logic | incorrect output | triangle_area | float triangle_area(float a,float b,float c) | Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangle_area(3, 4, 5) == 6.00
triangle_area(1, 2, 10) == -1 | Write a C++ function `float triangle_area(float a,float b,float c)` to solve the following problem:
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangle_area(3, 4, 5) == 6.00
triangle_area(1, 2, 10) == -1 |
CPP/72 | /*
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic vector) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
will_it_fly({1, 2}, 5) β false
// 1+2 is less than the maximum possible weight, but it's unbalanced.
will_it_fly({3, 2, 3}, 1) β false
// it's balanced, but 3+2+3 is more than the maximum possible weight.
will_it_fly({3, 2, 3}, 9) β true
// 3+2+3 is less than the maximum possible weight, and it's balanced.
will_it_fly({3}, 5) β true
// 3 is less than the maximum possible weight, and it's balanced.
*/
#include<stdio.h>
#include<vector>
using namespace std;
bool will_it_fly(vector<int> q,int w){
| int sum=0;
for (int i=0;i<q.size();i++)
{
if (q[i]!=q[q.size()-1-i]) return false;
sum+=q[i];
}
if (sum>w) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (will_it_fly({3, 2, 3}, 9)==true);
assert (will_it_fly({1, 2}, 5) == false);
assert (will_it_fly({3}, 5) == true);
assert (will_it_fly({3, 2, 3}, 1) == false);
assert (will_it_fly({1, 2, 3}, 6) ==false);
assert (will_it_fly({5}, 5) == true);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool will_it_fly(vector<int> q,int w){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (will_it_fly({3, 2, 3}, 9)==true);
assert (will_it_fly({1, 2}, 5) == false);
assert (will_it_fly({3}, 5) == true);
assert (will_it_fly({3, 2, 3}, 1) == false);
}
| int sum=0;
for (int i=0;i<q.size();i++)
{
if (q[i]==q[q.size()-1-i]) return false;
sum+=q[i];
}
if (sum>w) return false;
return true;
}
| operator misuse | incorrect output | will_it_fly | bool will_it_fly(vector<int> q,int w) | Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic vector) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
will_it_fly({1, 2}, 5) β false
// 1+2 is less than the maximum possible weight, but it's unbalanced.
will_it_fly({3, 2, 3}, 1) β false
// it's balanced, but 3+2+3 is more than the maximum possible weight.
will_it_fly({3, 2, 3}, 9) β true
// 3+2+3 is less than the maximum possible weight, and it's balanced.
will_it_fly({3}, 5) β true
// 3 is less than the maximum possible weight, and it's balanced. | Write a C++ function `bool will_it_fly(vector<int> q,int w)` to solve the following problem:
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic vector) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
will_it_fly({1, 2}, 5) β false
// 1+2 is less than the maximum possible weight, but it's unbalanced.
will_it_fly({3, 2, 3}, 1) β false
// it's balanced, but 3+2+3 is more than the maximum possible weight.
will_it_fly({3, 2, 3}, 9) β true
// 3+2+3 is less than the maximum possible weight, and it's balanced.
will_it_fly({3}, 5) β true
// 3 is less than the maximum possible weight, and it's balanced. |
CPP/73 | /*
Given a vector arr of integers, find the minimum number of elements that
need to be changed to make the vector palindromic. A palindromic vector is a vector that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallest_change({1,2,3,5,4,7,9,6}) == 4
smallest_change({1, 2, 3, 4, 3, 2, 2}) == 1
smallest_change({1, 2, 3, 2, 1}) == 0
*/
#include<stdio.h>
#include<vector>
using namespace std;
int smallest_change(vector<int> arr){
| int out=0;
for (int i=0;i<arr.size()-1-i;i++)
if (arr[i]!=arr[arr.size()-1-i])
out+=1;
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (smallest_change({1,2,3,5,4,7,9,6}) == 4);
assert (smallest_change({1, 2, 3, 4, 3, 2, 2}) == 1);
assert (smallest_change({1, 4, 2}) == 1);
assert (smallest_change({1, 4, 4, 2}) == 1);
assert (smallest_change({1, 2, 3, 2, 1}) == 0);
assert (smallest_change({3, 1, 1, 3}) == 0);
assert (smallest_change({1}) == 0);
assert (smallest_change({0, 1}) == 1);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int smallest_change(vector<int> arr){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (smallest_change({1,2,3,5,4,7,9,6}) == 4);
assert (smallest_change({1, 2, 3, 4, 3, 2, 2}) == 1);
assert (smallest_change({1, 2, 3, 2, 1}) == 0);
assert (smallest_change({3, 1, 1, 3}) == 0);
}
| int out=0;
for (int i=0;i<arr.size()-1-i;i++)
if (out!=arr[arr.size()-1-i])
out+=1;
return out;
}
| variable misuse | incorrect output | smallest_change | int smallest_change(vector<int> arr) | Given a vector arr of integers, find the minimum number of elements that
need to be changed to make the vector palindromic. A palindromic vector is a vector that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallest_change({1,2,3,5,4,7,9,6}) == 4
smallest_change({1, 2, 3, 4, 3, 2, 2}) == 1
smallest_change({1, 2, 3, 2, 1}) == 0 | Write a C++ function `int smallest_change(vector<int> arr)` to solve the following problem:
Given a vector arr of integers, find the minimum number of elements that
need to be changed to make the vector palindromic. A palindromic vector is a vector that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallest_change({1,2,3,5,4,7,9,6}) == 4
smallest_change({1, 2, 3, 4, 3, 2, 2}) == 1
smallest_change({1, 2, 3, 2, 1}) == 0 |
CPP/74 | /*
Write a function that accepts two vectors of strings and returns the vector that has
total number of chars in the all strings of the vector less than the other vector.
if the two vectors have the same number of chars, return the first vector.
Examples
total_match({}, {}) β {}
total_match({"hi", "admin"}, {"hI", "Hi"}) β {"hI", "Hi"}
total_match({"hi", "admin"}, {"hi", "hi", "admin", "project"}) β {"hi", "admin"}
total_match({"hi", "admin"}, {"hI", "hi", "hi"}) β {"hI", "hi", "hi"}
total_match({"4"}, {"1", "2", "3", "4", "5"}) β {"4"}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<string> total_match(vector<string> lst1,vector<string> lst2){
| int num1,num2,i;
num1=0;num2=0;
for (i=0;i<lst1.size();i++)
num1+=lst1[i].length();
for (i=0;i<lst2.size();i++)
num2+=lst2[i].length();
if (num1>num2) return lst2;
return lst1;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(total_match({}, {}) , {}));
assert (issame(total_match({"hi", "admin"}, {"hi", "hi"}) , {"hi", "hi"}));
assert (issame(total_match({"hi", "admin"}, {"hi", "hi", "admin", "project"}) , {"hi", "admin"}));
assert (issame(total_match({"4"}, {"1", "2", "3", "4", "5"}) , {"4"}));
assert (issame(total_match({"hi", "admin"}, {"hI", "Hi"}) , {"hI", "Hi"}));
assert (issame(total_match({"hi", "admin"}, {"hI", "hi", "hi"}) , {"hI", "hi", "hi"}));
assert (issame(total_match({"hi", "admin"}, {"hI", "hi", "hii"}) , {"hi", "admin"}));
assert (issame(total_match({}, {"this"}) , {}));
assert (issame(total_match({"this"}, {}) , {}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<string> total_match(vector<string> lst1,vector<string> lst2){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(total_match({}, {}) , {}));
assert (issame(total_match({"hi", "admin"}, {"hi", "hi", "admin", "project"}) , {"hi", "admin"}));
assert (issame(total_match({"4"}, {"1", "2", "3", "4", "5"}) , {"4"}));
assert (issame(total_match({"hi", "admin"}, {"hI", "Hi"}) , {"hI", "Hi"}));
assert (issame(total_match({"hi", "admin"}, {"hI", "hi", "hi"}) , {"hI", "hi", "hi"}));
}
| int num1,num2,i;
num1=0;num2=0;
for (i=0;i<lst1.size();i++)
num1+=lst1[i].length();
for (i=0;i<lst2.size();i++)
num2+=lst2[i].length();
if (num1>num2) return lst1;
return lst2;
}
| variable misuse | incorrect output | total_match | vector<string> total_match(vector<string> lst1,vector<string> lst2) | Write a function that accepts two vectors of strings and returns the vector that has
total number of chars in the all strings of the vector less than the other vector.
if the two vectors have the same number of chars, return the first vector.
Examples
total_match({}, {}) β {}
total_match({"hi", "admin"}, {"hI", "Hi"}) β {"hI", "Hi"}
total_match({"hi", "admin"}, {"hi", "hi", "admin", "project"}) β {"hi", "admin"}
total_match({"hi", "admin"}, {"hI", "hi", "hi"}) β {"hI", "hi", "hi"}
total_match({"4"}, {"1", "2", "3", "4", "5"}) β {"4"} | Write a C++ function `vector<string> total_match(vector<string> lst1,vector<string> lst2)` to solve the following problem:
Write a function that accepts two vectors of strings and returns the vector that has
total number of chars in the all strings of the vector less than the other vector.
if the two vectors have the same number of chars, return the first vector.
Examples
total_match({}, {}) β {}
total_match({"hi", "admin"}, {"hI", "Hi"}) β {"hI", "Hi"}
total_match({"hi", "admin"}, {"hi", "hi", "admin", "project"}) β {"hi", "admin"}
total_match({"hi", "admin"}, {"hI", "hi", "hi"}) β {"hI", "hi", "hi"}
total_match({"4"}, {"1", "2", "3", "4", "5"}) β {"4"} |
CPP/75 | /*
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
is_multiply_prime(30) == true
30 = 2 * 3 * 5
*/
#include<stdio.h>
using namespace std;
bool is_multiply_prime(int a){
| int num=0;
for (int i=2;i*i<=a;i++)
while (a%i==0 and a>i)
{
a=a/i;
num+=1;
}
if (num==2) return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_multiply_prime(5) == false);
assert (is_multiply_prime(30) == true);
assert (is_multiply_prime(8) == true);
assert (is_multiply_prime(10) == false);
assert (is_multiply_prime(125) == true);
assert (is_multiply_prime(3 * 5 * 7) == true);
assert (is_multiply_prime(3 * 6 * 7) == false);
assert (is_multiply_prime(9 * 9 * 9) == false);
assert (is_multiply_prime(11 * 9 * 9) == false);
assert (is_multiply_prime(11 * 13 * 7) == true);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool is_multiply_prime(int a){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_multiply_prime(30) == true);
}
| int num=0;
for (int i=0;i*i<=a;i++)
while (a%i==0 and a>i)
{
a=a/i;
num+=1;
}
if (num==2) return true;
return false;
}
| value misuse | incorrect output | is_multiply_prime | bool is_multiply_prime(int a) | Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
is_multiply_prime(30) == true
30 = 2 * 3 * 5 | Write a C++ function `bool is_multiply_prime(int a)` to solve the following problem:
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
is_multiply_prime(30) == true
30 = 2 * 3 * 5 |
CPP/76 | /*
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false
*/
#include<stdio.h>
#include<math.h>
using namespace std;
bool is_simple_power(int x,int n){
| int p=1,count=0;
while (p<=x and count<100)
{
if (p==x) return true;
p=p*n;count+=1;
}
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_simple_power(1, 4)== true);
assert (is_simple_power(2, 2)==true);
assert (is_simple_power(8, 2)==true);
assert (is_simple_power(3, 2)==false);
assert (is_simple_power(3, 1)==false);
assert (is_simple_power(5, 3)==false);
assert (is_simple_power(16, 2)== true);
assert (is_simple_power(143214, 16)== false);
assert (is_simple_power(4, 2)==true);
assert (is_simple_power(9, 3)==true);
assert (is_simple_power(16, 4)==true);
assert (is_simple_power(24, 2)==false);
assert (is_simple_power(128, 4)==false);
assert (is_simple_power(12, 6)==false);
assert (is_simple_power(1, 1)==true);
assert (is_simple_power(1, 12)==true);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool is_simple_power(int x,int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_simple_power(1, 4)== true);
assert (is_simple_power(2, 2)==true);
assert (is_simple_power(8, 2)==true);
assert (is_simple_power(3, 2)==false);
assert (is_simple_power(3, 1)==false);
assert (is_simple_power(5, 3)==false);
}
| int p=1,count=0;
while (p<=x)
{
if (p==x) return true;
count=p*n;x+=1;p+=1;
}
return false;
}
| variable misuse | infinite loop | is_simple_power | bool is_simple_power(int x,int n) | Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false | Write a C++ function `bool is_simple_power(int x,int n)` to solve the following problem:
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false |
CPP/77 | /*
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(1) ==> true
iscube(2) ==> false
iscube(-1) ==> true
iscube(64) ==> true
iscube(0) ==> true
iscube(180) ==> false
*/
#include<stdio.h>
#include<math.h>
using namespace std;
bool iscube(int a){
| for (int i=0;i*i*i<=abs(a);i++)
if (i*i*i==abs(a)) return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (iscube(1) == true);
assert (iscube(2) == false);
assert (iscube(-1) == true);
assert (iscube(64) == true);
assert (iscube(180) == false);
assert (iscube(1000) == true);
assert (iscube(0) == true);
assert (iscube(1729) == false);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool iscube(int a){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (iscube(1) == true);
assert (iscube(2) == false);
assert (iscube(-1) == true);
assert (iscube(64) == true);
assert (iscube(180) == false);
assert (iscube(0) == true);
}
| for (int i=0;i*i*i<=abs(a);i++)
if (i*i==abs(a)) return true;
return false;
}
| missing logic | incorrect output | iscube | bool iscube(int a) | Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(1) ==> true
iscube(2) ==> false
iscube(-1) ==> true
iscube(64) ==> true
iscube(0) ==> true
iscube(180) ==> false | Write a C++ function `bool iscube(int a)` to solve the following problem:
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(1) ==> true
iscube(2) ==> false
iscube(-1) ==> true
iscube(64) ==> true
iscube(0) ==> true
iscube(180) ==> false |
CPP/78 | /*
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
For num = "AB" the output should be 1.
For num = "1077E" the output should be 2.
For num = "ABED1A33" the output should be 4.
For num = "123456789ABCDEF0" the output should be 6.
For num = "2020" the output should be 2.
*/
#include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
int hex_key(string num){
| string key="2357BD";
int out=0;
for (int i=0;i<num.length();i++)
if (find(key.begin(),key.end(),num[i])!=key.end()) out+=1;
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (hex_key("AB") == 1 );
assert (hex_key("1077E") == 2 );
assert (hex_key("ABED1A33") == 4 );
assert (hex_key("2020") == 2 );
assert (hex_key("123456789ABCDEF0") == 6 );
assert (hex_key("112233445566778899AABBCCDDEEFF00") == 12 );
assert (hex_key("") == 0);
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int hex_key(string num){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (hex_key("AB") == 1 );
assert (hex_key("1077E") == 2 );
assert (hex_key("ABED1A33") == 4 );
assert (hex_key("2020") == 2 );
assert (hex_key("123456789ABCDEF0") == 6 );
}
| string key="2357BD";
int out=1;
for (int i=0;i<num.length();i++)
if (find(key.begin(),key.end(),num[i])!=key.end()) out+=1;
return out;
}
| value misuse | incorrect output | hex_key | int hex_key(string num) | You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
For num = "AB" the output should be 1.
For num = "1077E" the output should be 2.
For num = "ABED1A33" the output should be 4.
For num = "123456789ABCDEF0" the output should be 6.
For num = "2020" the output should be 2. | Write a C++ function `int hex_key(string num)` to solve the following problem:
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
For num = "AB" the output should be 1.
For num = "1077E" the output should be 2.
For num = "ABED1A33" the output should be 4.
For num = "123456789ABCDEF0" the output should be 6.
For num = "2020" the output should be 2. |
CPP/79 | /*
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters "db" at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimal_to_binary(15) // returns "db1111db"
decimal_to_binary(32) // returns "db100000db"
*/
#include<stdio.h>
#include<string>
using namespace std;
string decimal_to_binary(int decimal){
| string out="";
if (decimal==0) return "db0db";
while (decimal>0)
{
out=to_string(decimal%2)+out;
decimal=decimal/2;
}
out="db"+out+"db";
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (decimal_to_binary(0) == "db0db");
assert (decimal_to_binary(32) == "db100000db");
assert (decimal_to_binary(103) == "db1100111db");
assert (decimal_to_binary(15) == "db1111db");
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string decimal_to_binary(int decimal){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (decimal_to_binary(32) == "db100000db");
assert (decimal_to_binary(15) == "db1111db");
}
| string out="";
if (decimal==0) return "db0db";
while (decimal>0)
{
out=to_string(decimal%2)+out;
decimal=decimal/2;
}
out="db"+out+"d";
return out;
}
| missing logic | incorrect output | decimal_to_binary | string decimal_to_binary(int decimal) | You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters "db" at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimal_to_binary(15) // returns "db1111db"
decimal_to_binary(32) // returns "db100000db" | Write a C++ function `string decimal_to_binary(int decimal)` to solve the following problem:
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters "db" at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimal_to_binary(15) // returns "db1111db"
decimal_to_binary(32) // returns "db100000db" |
CPP/80 | /*
You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
is_happy("a") => false
is_happy("aa") => false
is_happy("abcd") => true
is_happy("aabb") => false
is_happy("adb") => true
is_happy("xyy") => false
*/
#include<stdio.h>
#include<string>
using namespace std;
bool is_happy(string s){
| if (s.length()<3) return false;
for (int i=2;i<s.length();i++)
if (s[i]==s[i-1] or s[i]==s[i-2]) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_happy("a") == false );
assert (is_happy("aa") == false );
assert (is_happy("abcd") == true );
assert (is_happy("aabb") == false );
assert (is_happy("adb") == true );
assert (is_happy("xyy") == false );
assert (is_happy("iopaxpoi") == true );
assert (is_happy("iopaxioi") == false );
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool is_happy(string s){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_happy("a") == false );
assert (is_happy("aa") == false );
assert (is_happy("abcd") == true );
assert (is_happy("aabb") == false );
assert (is_happy("adb") == true );
assert (is_happy("xyy") == false );
}
| if (s.length()<3) return false;
for (int i=2;i<s.length();i++)
if (s[i]==s[i-1] and s[i]==s[i-2]) return false;
return true;
}
| operator misuse | incorrect output | is_happy | bool is_happy(string s) | You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
is_happy("a") => false
is_happy("aa") => false
is_happy("abcd") => true
is_happy("aabb") => false
is_happy("adb") => true
is_happy("xyy") => false | Write a C++ function `bool is_happy(string s)` to solve the following problem:
You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
is_happy("a") => false
is_happy("aa") => false
is_happy("abcd") => true
is_happy("aabb") => false
is_happy("adb") => true
is_happy("xyy") => false |
CPP/81 | /*
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a vector of GPAs for some students and you have to write
a function that can output a vector of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
grade_equation({4.0, 3, 1.7, 2, 3.5}) ==> {"A+", "B", "C-", "C", "A-"}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<string> numerical_letter_grade(vector<float> grades){
| vector<string> out={};
for (int i=0;i<grades.size();i++)
{
if (grades[i]>=3.9999) out.push_back("A+");
if (grades[i]>3.7001 and grades[i]<3.9999) out.push_back("A");
if (grades[i]>3.3001 and grades[i]<=3.7001) out.push_back("A-");
if (grades[i]>3.0001 and grades[i]<=3.3001) out.push_back("B+");
if (grades[i]>2.7001 and grades[i]<=3.0001) out.push_back("B");
if (grades[i]>2.3001 and grades[i]<=2.7001) out.push_back("B-");
if (grades[i]>2.0001 and grades[i]<=2.3001) out.push_back("C+");
if (grades[i]>1.7001 and grades[i]<=2.0001) out.push_back("C");
if (grades[i]>1.3001 and grades[i]<=1.7001) out.push_back("C-");
if (grades[i]>1.0001 and grades[i]<=1.3001) out.push_back("D+");
if (grades[i]>0.7001 and grades[i]<=1.0001) out.push_back("D");
if (grades[i]>0.0001 and grades[i]<=0.7001) out.push_back("D-");
if (grades[i]<=0.0001) out.push_back("E");
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(numerical_letter_grade({4.0, 3, 1.7, 2, 3.5}) , {"A+", "B", "C-", "C", "A-"}));
assert (issame(numerical_letter_grade({1.2}) , {"D+"}));
assert (issame(numerical_letter_grade({0.5}) , {"D-"}));
assert (issame(numerical_letter_grade({0.0}) , {"E"}));
assert (issame(numerical_letter_grade({1, 0.3, 1.5, 2.8, 3.3}) , {"D", "D-", "C-", "B", "B+"}));
assert (issame(numerical_letter_grade({0, 0.7}) , {"E", "D-"}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<string> numerical_letter_grade(vector<float> grades){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(numerical_letter_grade({4.0, 3, 1.7, 2, 3.5}) , {"A+", "B", "C-", "C", "A-"}));
}
| vector<string> out={};
for (int i=0;i<grades.size();i++)
{
if (grades[i]>=3.9999) out.push_back("A+");
if (grades[i]>3.7001 and grades[i]<3.9999) out.push_back("A");
if (grades[i]>3.3001 and grades[i]<=3.7001) out.push_back("A-");
if (grades[i]>3.0001 and grades[i]<=3.3001) out.push_back("B+");
if (grades[i]>2.7001 and grades[i]<=3.0001) out.push_back("B");
if (grades[i]>2.3001 and grades[i]<=2.7001) out.push_back("B-");
if (grades[i]>2.0001 and grades[i]<=2.3001) out.push_back("C+");
if (grades[i]>1.7001 and grades[i]<=2.0001) out.push_back("C");
if (grades[i]>1.3001 and grades[i]<=1.7001) out.push_back("C-");
if (grades[i]>1.0001 and grades[i]<=1.3001) out.push_back("D+");
if (grades[i]>0.7001 and grades[i]<=1.0001) out.push_back("D");
if (grades[i]>0.0001 and grades[i]<=0.7001) out.push_back("D-");
if (grades[i]<=0.0001) out.push_back("E+");
}
return out;
}
| excess logic | incorrect output | numerical_letter_grade | vector<string> numerical_letter_grade(vector<float> grades) | It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a vector of GPAs for some students and you have to write
a function that can output a vector of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
grade_equation({4.0, 3, 1.7, 2, 3.5}) ==> {"A+", "B", "C-", "C", "A-"} | Write a C++ function `vector<string> numerical_letter_grade(vector<float> grades)` to solve the following problem:
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a vector of GPAs for some students and you have to write
a function that can output a vector of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
grade_equation({4.0, 3, 1.7, 2, 3.5}) ==> {"A+", "B", "C-", "C", "A-"} |
CPP/82 | /*
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
prime_length("Hello") == true
prime_length("abcdcba") == true
prime_length("kittens") == true
prime_length("orange") == false
*/
#include<stdio.h>
#include<string>
using namespace std;
bool prime_length(string str){
| int l,i;
l=str.length();
if (l<2) return false;
for (i=2;i*i<=l;i++)
if (l%i==0) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (prime_length("Hello") == true);
assert (prime_length("abcdcba") == true);
assert (prime_length("kittens") == true);
assert (prime_length("orange") == false);
assert (prime_length("wow") == true);
assert (prime_length("world") == true);
assert (prime_length("MadaM") == true);
assert (prime_length("Wow") == true);
assert (prime_length("") == false);
assert (prime_length("HI") == true);
assert (prime_length("go") == true);
assert (prime_length("gogo") == false);
assert (prime_length("aaaaaaaaaaaaaaa") == false);
assert (prime_length("Madam") == true);
assert (prime_length("M") == false);
assert (prime_length("0") == false);
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool prime_length(string str){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (prime_length("Hello") == true);
assert (prime_length("abcdcba") == true);
assert (prime_length("kittens") == true);
assert (prime_length("orange") == false);
}
| int l,i;
l=str.length();
if (l<2) return false;
for (i=3;i*i<=l;i++)
if (l%i==0) return false;
return true;
}
| value misuse | incorrect output | prime_length | bool prime_length(string str) | Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
prime_length("Hello") == true
prime_length("abcdcba") == true
prime_length("kittens") == true
prime_length("orange") == false | Write a C++ function `bool prime_length(string str)` to solve the following problem:
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
prime_length("Hello") == true
prime_length("abcdcba") == true
prime_length("kittens") == true
prime_length("orange") == false |
CPP/83 | /*
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
*/
#include<stdio.h>
using namespace std;
int starts_one_ends(int n){
| if (n<1) return 0;
if (n==1) return 1;
int out=18;
for (int i=2;i<n;i++)
out=out*10;
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (starts_one_ends(1) == 1);
assert (starts_one_ends(2) == 18);
assert (starts_one_ends(3) == 180);
assert (starts_one_ends(4) == 1800);
assert (starts_one_ends(5) == 18000);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int starts_one_ends(int n){
| if (n<1) return 0;
if (n==1) return 1;
int out=18;
for (int i=2;i<n;i++)
out=out*i*10;
return out;
}
| excess logic | incorrect output | starts_one_ends | int starts_one_ends(int n) | Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. | Write a C++ function `int starts_one_ends(int n)` to solve the following problem:
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. |
|
CPP/84 | /*
Given a positive integer N, return the total sum of its digits in binary.
Example
For N = 1000, the sum of digits will be 1 the output should be "1".
For N = 150, the sum of digits will be 6 the output should be "110".
For N = 147, the sum of digits will be 12 the output should be "1100".
Variables:
@N integer
Constraints: 0 β€ N β€ 10000.
Output:
a string of binary number
*/
#include<stdio.h>
#include<string>
using namespace std;
string solve(int N){
| string str,bi="";
str=to_string(N);
int i,sum=0;
for (int i=0;i<str.length();i++)
sum+=str[i]-48;
while (sum>0)
{
bi=to_string(sum%2)+bi;
sum=sum/2;
}
return bi;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (solve(1000) == "1");
assert (solve(150) == "110");
assert (solve(147) == "1100");
assert (solve(333) == "1001");
assert (solve(963) == "10010");
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string solve(int N){
| string str,bi="";
str=to_string(N);
int i,sum=0;
for (int i=0;i<str.length();i++)
sum=str[i]-48;
while (sum>0)
{
bi=to_string(sum%2)+bi;
sum=sum/2;
}
return bi;
}
| operator misuse | incorrect output | solve | string solve(int N) | Given a positive integer N, return the total sum of its digits in binary.
Example
For N = 1000, the sum of digits will be 1 the output should be "1".
For N = 150, the sum of digits will be 6 the output should be "110".
For N = 147, the sum of digits will be 12 the output should be "1100".
Variables:
@N integer
Constraints: 0 β€ N β€ 10000.
Output:
a string of binary number | Write a C++ function `string solve(int N)` to solve the following problem:
Given a positive integer N, return the total sum of its digits in binary.
Example
For N = 1000, the sum of digits will be 1 the output should be "1".
For N = 150, the sum of digits will be 6 the output should be "110".
For N = 147, the sum of digits will be 12 the output should be "1100".
Variables:
@N integer
Constraints: 0 β€ N β€ 10000.
Output:
a string of binary number |
|
CPP/85 | /*
Given a non-empty vector of integers lst. add the even elements that are at odd indices..
Examples:
add({4, 2, 6, 7}) ==> 2
*/
#include<stdio.h>
#include<vector>
using namespace std;
int add(vector<int> lst){
| int sum=0;
for (int i=0;i*2+1<lst.size();i++)
if (lst[i*2+1]%2==0) sum+=lst[i*2+1];
return sum;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (add({4, 88}) == 88);
assert (add({4, 5, 6, 7, 2, 122}) == 122);
assert (add({4, 0, 6, 7}) == 0);
assert (add({4, 4, 6, 8}) == 12);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int add(vector<int> lst){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (add({4, 2, 6, 7}) == 2);
}
| int sum=0;
for (int i=0;i*2<lst.size();i++)
if (lst[i*2]%2==0) sum+=lst[i*2];
return sum;
}
| value misuse | incorrect output | add | int add(vector<int> lst) | Given a non-empty vector of integers lst. add the even elements that are at odd indices..
Examples:
add({4, 2, 6, 7}) ==> 2 | Write a C++ function `int add(vector<int> lst)` to solve the following problem:
Given a non-empty vector of integers lst. add the even elements that are at odd indices..
Examples:
add({4, 2, 6, 7}) ==> 2 |
CPP/86 | /*
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
anti_shuffle("Hi") returns "Hi"
anti_shuffle("hello") returns "ehllo"
anti_shuffle("Hello World!!!") returns "Hello !!!Wdlor"
*/
#include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
string anti_shuffle(string s){
| string out="";
string current="";
s=s+' ';
for (int i=0;i<s.length();i++)
if (s[i]==' ')
{
sort(current.begin(),current.end());
if (out.length()>0) out=out+' ';
out=out+current;
current="";
}
else current=current+s[i];
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (anti_shuffle("Hi") == "Hi");
assert (anti_shuffle("hello") == "ehllo");
assert (anti_shuffle("number") == "bemnru");
assert (anti_shuffle("abcd") == "abcd");
assert (anti_shuffle("Hello World!!!") == "Hello !!!Wdlor");
assert (anti_shuffle("") == "");
assert (anti_shuffle("Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy");
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
string anti_shuffle(string s){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (anti_shuffle("Hi") == "Hi");
assert (anti_shuffle("hello") == "ehllo");
assert (anti_shuffle("Hello World!!!") == "Hello !!!Wdlor");
}
| string out="";
string current="";
s=s+' ';
for (int i=0;i<s.length();i++)
if (s[i]==' ')
{
sort(current.begin(),current.end());
out=out+current;
current="";
}
else current=current+s[i];
return out;
}
| missing logic | incorrect output | anti_shuffle | string anti_shuffle(string s) | Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
anti_shuffle("Hi") returns "Hi"
anti_shuffle("hello") returns "ehllo"
anti_shuffle("Hello World!!!") returns "Hello !!!Wdlor" | Write a C++ function `string anti_shuffle(string s)` to solve the following problem:
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
anti_shuffle("Hi") returns "Hi"
anti_shuffle("hello") returns "ehllo"
anti_shuffle("Hello World!!!") returns "Hello !!!Wdlor" |
CPP/87 | /*
You are given a 2 dimensional data, as a nested vectors,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the vector,
and return vector of vectors, {{x1, y1}, {x2, y2} ...} such that
each vector is a coordinate - {row, columns}, starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
get_row({
{1,2,3,4,5,6},
{1,2,3,4,1,6},
{1,2,3,4,5,1}
}, 1) == {{0, 0}, {1, 4}, {1, 0}, {2, 5}, {2, 0}}
get_row({}, 1) == {}
get_row({{}, {1}, {1, 2, 3}}, 3) == {{2, 2}}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<vector<int>> get_row(vector<vector<int>> lst, int x){
| vector<vector<int>> out={};
for (int i=0;i<lst.size();i++)
for (int j=lst[i].size()-1;j>=0;j-=1)
if (lst[i][j]==x) out.push_back({i,j});
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<vector<int>> a,vector<vector<int>> b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i].size()!=b[i].size()) return false;
for (int j=0;j<a[i].size();j++)
if (a[i][j]!=b[i][j]) return false;
}
return true;
}
int main(){
assert (issame(get_row({
{1,2,3,4,5,6},
{1,2,3,4,1,6},
{1,2,3,4,5,1}}, 1) , {{0, 0}, {1, 4}, {1, 0}, {2, 5}, {2, 0}}));
assert (issame(get_row({
{1,2,3,4,5,6},
{1,2,3,4,5,6},
{1,2,3,4,5,6},
{1,2,3,4,5,6},
{1,2,3,4,5,6},
{1,2,3,4,5,6}}, 2) , {{0, 1}, {1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}}));
assert (issame(get_row({
{1,2,3,4,5,6},
{1,2,3,4,5,6},
{1,1,3,4,5,6},
{1,2,1,4,5,6},
{1,2,3,1,5,6},
{1,2,3,4,1,6},
{1,2,3,4,5,1}
}, 1) , {{0, 0}, {1, 0}, {2, 1}, {2, 0}, {3, 2}, {3, 0}, {4, 3}, {4, 0}, {5, 4}, {5, 0}, {6, 5}, {6, 0}}));
assert (issame(get_row({}, 1) , {}));
assert (issame(get_row({{1}}, 2) , {}));
assert (issame(get_row({{}, {1}, {1, 2, 3}}, 3) , {{2, 2}}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<vector<int>> get_row(vector<vector<int>> lst, int x){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<vector<int>> a,vector<vector<int>> b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i].size()!=b[i].size()) return false;
for (int j=0;j<a[i].size();j++)
if (a[i][j]!=b[i][j]) return false;
}
return true;
}
int main(){
assert (issame(get_row({
{1,2,3,4,5,6},
{1,2,3,4,1,6},
{1,2,3,4,5,1}}, 1) , {{0, 0}, {1, 4}, {1, 0}, {2, 5}, {2, 0}}));
assert (issame(get_row({}, 1) , {}));
assert (issame(get_row({{}, {1}, {1, 2, 3}}, 3) , {{2, 2}}));
}
| vector<vector<int>> out={};
for (int i=0;i<lst.size();i++)
for (int j=lst[i].size()-1;j>=0;j-=1)
if (lst[i][j]==x) out.push_back({j,i});
return out;
}
| variable misuse | incorrect output | get_row | vector<vector<int>> get_row(vector<vector<int>> lst, int x) | You are given a 2 dimensional data, as a nested vectors,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the vector,
and return vector of vectors, {{x1, y1}, {x2, y2} ...} such that
each vector is a coordinate - {row, columns}, starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
get_row({
{1,2,3,4,5,6},
{1,2,3,4,1,6},
{1,2,3,4,5,1}
}, 1) == {{0, 0}, {1, 4}, {1, 0}, {2, 5}, {2, 0}}
get_row({}, 1) == {}
get_row({{}, {1}, {1, 2, 3}}, 3) == {{2, 2}} | Write a C++ function `vector<vector<int>> get_row(vector<vector<int>> lst, int x)` to solve the following problem:
You are given a 2 dimensional data, as a nested vectors,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the vector,
and return vector of vectors, {{x1, y1}, {x2, y2} ...} such that
each vector is a coordinate - {row, columns}, starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
get_row({
{1,2,3,4,5,6},
{1,2,3,4,1,6},
{1,2,3,4,5,1}
}, 1) == {{0, 0}, {1, 4}, {1, 0}, {2, 5}, {2, 0}}
get_row({}, 1) == {}
get_row({{}, {1}, {1, 2, 3}}, 3) == {{2, 2}} |
CPP/88 | /*
Given a vector of non-negative integers, return a copy of the given vector after sorting,
you will sort the given vector in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given vector.
Examples:
* sort_vector({}) => {}
* sort_vector({5}) => {5}
* sort_vector({2, 4, 3, 0, 1, 5}) => {0, 1, 2, 3, 4, 5}
* sort_vector({2, 4, 3, 0, 1, 5, 6}) => {6, 5, 4, 3, 2, 1, 0}
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> sort_array(vector<int> array){
| if (array.size()==0) return {};
if ((array[0]+array[array.size()-1]) %2==1)
{
sort(array.begin(),array.end());
return array;
}
else
{
sort(array.begin(),array.end());
vector<int> out={};
for (int i=array.size()-1;i>=0;i-=1)
out.push_back(array[i]);
return out;
}
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sort_array({}) , {}));
assert (issame(sort_array({5}) , {5}));
assert (issame(sort_array({2, 4, 3, 0, 1, 5}) , {0, 1, 2, 3, 4, 5}));
assert (issame(sort_array({2, 4, 3, 0, 1, 5, 6}) , {6, 5, 4, 3, 2, 1, 0}));
assert (issame(sort_array({2, 1}) , {1, 2}));
assert (issame(sort_array({15, 42, 87, 32 ,11, 0}) , {0, 11, 15, 32, 42, 87}));
assert (issame(sort_array({21, 14, 23, 11}) , {23, 21, 14, 11}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> sort_array(vector<int> array){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sort_array({}) , {}));
assert (issame(sort_array({5}) , {5}));
assert (issame(sort_array({2, 4, 3, 0, 1, 5}) , {0, 1, 2, 3, 4, 5}));
assert (issame(sort_array({2, 4, 3, 0, 1, 5, 6}) , {6, 5, 4, 3, 2, 1, 0}));
}
| if (array.size()==0) return {};
if ((array[0]+array[array.size()-1]) %2!=1)
{
sort(array.begin(),array.end());
return array;
}
else
{
sort(array.begin(),array.end());
vector<int> out={};
for (int i=array.size()-1;i>=0;i-=1)
out.push_back(array[i]);
return out;
}
}
| operator misuse | incorrect output | sort_array | vector<int> sort_array(vector<int> array) | Given a vector of non-negative integers, return a copy of the given vector after sorting,
you will sort the given vector in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given vector.
Examples:
* sort_vector({}) => {}
* sort_vector({5}) => {5}
* sort_vector({2, 4, 3, 0, 1, 5}) => {0, 1, 2, 3, 4, 5}
* sort_vector({2, 4, 3, 0, 1, 5, 6}) => {6, 5, 4, 3, 2, 1, 0} | Write a C++ function `vector<int> sort_array(vector<int> array)` to solve the following problem:
Given a vector of non-negative integers, return a copy of the given vector after sorting,
you will sort the given vector in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given vector.
Examples:
* sort_vector({}) => {}
* sort_vector({5}) => {5}
* sort_vector({2, 4, 3, 0, 1, 5}) => {0, 1, 2, 3, 4, 5}
* sort_vector({2, 4, 3, 0, 1, 5, 6}) => {6, 5, 4, 3, 2, 1, 0} |
CPP/89 | /*
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt("hi") returns "lm"
encrypt("asdfghjkl") returns "ewhjklnop"
encrypt("gf") returns "kj"
encrypt("et") returns "ix"
*/
#include<stdio.h>
#include<string>
using namespace std;
string encrypt(string s){
| string out;
int i;
for (i=0;i<s.length();i++)
{
int w=((int)s[i]+4-(int)'a')%26+(int)'a';
out=out+(char)w;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (encrypt("hi") == "lm");
assert (encrypt("asdfghjkl") == "ewhjklnop");
assert (encrypt("gf") == "kj");
assert (encrypt("et") == "ix");
assert (encrypt("faewfawefaewg")=="jeiajeaijeiak");
assert (encrypt("hellomyfriend")=="lippsqcjvmirh");
assert (encrypt("dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh")=="hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl");
assert (encrypt("a")=="e");
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string encrypt(string s){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (encrypt("hi") == "lm");
assert (encrypt("asdfghjkl") == "ewhjklnop");
assert (encrypt("gf") == "kj");
assert (encrypt("et") == "ix");
}
| string out;
int i;
for (i=0;i<s.length();i++)
{
int w=((int)s[i]+4-(int)'a')%24+(int)'a';
out=out+(char)w;
}
return out;
}
| value misuse | incorrect output | encrypt | string encrypt(string s) | Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt("hi") returns "lm"
encrypt("asdfghjkl") returns "ewhjklnop"
encrypt("gf") returns "kj"
encrypt("et") returns "ix" | Write a C++ function `string encrypt(string s)` to solve the following problem:
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt("hi") returns "lm"
encrypt("asdfghjkl") returns "ewhjklnop"
encrypt("gf") returns "kj"
encrypt("et") returns "ix" |
CPP/90 | /*
You are given a vector of integers.
Write a function next_smallest() that returns the 2nd smallest element of the vector.
Return None if there is no such element.
next_smallest({1, 2, 3, 4, 5}) == 2
next_smallest({5, 1, 4, 3, 2}) == 2
next_smallest({}) == None
next_smallest({1, 1}) == None
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
int next_smallest(vector<int> lst){
| sort(lst.begin(),lst.end());
for (int i=1;i<lst.size();i++)
if (lst[i]!=lst[i-1]) return lst[i];
return -1;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (next_smallest({1, 2, 3, 4, 5}) == 2);
assert (next_smallest({5, 1, 4, 3, 2}) == 2);
assert (next_smallest({}) == -1);
assert (next_smallest({1, 1}) == -1);
assert (next_smallest({1,1,1,1,0}) == 1);
assert (next_smallest({-35, 34, 12, -45}) == -35);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int next_smallest(vector<int> lst){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (next_smallest({1, 2, 3, 4, 5}) == 2);
assert (next_smallest({5, 1, 4, 3, 2}) == 2);
assert (next_smallest({}) == -1);
assert (next_smallest({1, 1}) == -1);
}
| sort(lst.begin(),lst.end());
for (int i=2;i<lst.size();i++)
if (lst[i]!=lst[i-1]) return lst[i];
return -1;
}
| value misuse | incorrect output | next_smallest | int next_smallest(vector<int> lst) | You are given a vector of integers.
Write a function next_smallest() that returns the 2nd smallest element of the vector.
Return None if there is no such element.
next_smallest({1, 2, 3, 4, 5}) == 2
next_smallest({5, 1, 4, 3, 2}) == 2
next_smallest({}) == None
next_smallest({1, 1}) == None | Write a C++ function `int next_smallest(vector<int> lst)` to solve the following problem:
You are given a vector of integers.
Write a function next_smallest() that returns the 2nd smallest element of the vector.
Return None if there is no such element.
next_smallest({1, 2, 3, 4, 5}) == 2
next_smallest({5, 1, 4, 3, 2}) == 2
next_smallest({}) == None
next_smallest({1, 1}) == None |
CPP/91 | /*
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored("Hello world")
0
>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1
*/
#include<stdio.h>
#include<string>
using namespace std;
int is_bored(string S){
| bool isstart=true;
bool isi=false;
int sum=0;
for (int i=0;i<S.length();i++)
{
if (S[i]==' ' and isi) {isi=false; sum+=1;}
if (S[i]=='I' and isstart) {isi=true; }
else isi=false;
if (S[i]!=' ') { isstart=false;}
if (S[i]=='.' or S[i]=='?' or S[i]=='!') isstart=true;
}
return sum;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_bored("Hello world") == 0);
assert (is_bored("Is the sky blue?") == 0);
assert (is_bored("I love It !") == 1);
assert (is_bored("bIt") == 0);
assert (is_bored("I feel good today. I will be productive. will kill It") == 2);
assert (is_bored("You and I are going for a walk") == 0);
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int is_bored(string S){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_bored("Hello world") == 0);
assert (is_bored("The sky is blue. The sun is shining. I love this weather") == 1);
}
| bool isstart=true;
bool isi=false;
int sum=0;
for (int i=0;i<S.length();i++)
{
if (S[i]=='I' and isi) {isi=false; sum+=1;}
if (S[i]==' ' and isstart) {isi=true; }
else isi=false;
if (S[i]!=' ') { isstart=false;}
if (S[i]=='.' or S[i]=='?' or S[i]=='!') isstart=true;
}
return sum;
}
| value misuse | incorrect output | is_bored | int is_bored(string S) | You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored("Hello world")
0
>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1 | Write a C++ function `int is_bored(string S)` to solve the following problem:
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored("Hello world")
0
>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1 |
CPP/92 | /*
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
any_int(5, 2, 7) β true
any_int(3, 2, 2) β false
any_int(3, -2, 1) β true
any_int(3.6, -2.2, 2) β false
*/
#include<stdio.h>
#include<math.h>
using namespace std;
bool any_int(float a,float b,float c){
| if (round(a)!=a) return false;
if (round(b)!=b) return false;
if (round(c)!=c) return false;
if (a+b==c or a+c==b or b+c==a) return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (any_int(2, 3, 1)==true);
assert (any_int(2.5, 2, 3)==false);
assert (any_int(1.5, 5, 3.5)==false);
assert (any_int(2, 6, 2)==false);
assert (any_int(4, 2, 2)==true);
assert (any_int(2.2, 2.2, 2.2)==false);
assert (any_int(-4, 6, 2)==true);
assert (any_int(2,1,1)==true);
assert (any_int(3,4,7)==true);
assert (any_int(3.01,4,7)==false);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool any_int(float a,float b,float c){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (any_int(5, 2, 7)==true);
assert (any_int(3, 2, 2)==false);
assert (any_int(3, -2, 1)==true);
assert (any_int(3.6, -2.2, 2)==false);
}
| if (round(a)!=a) return false;
if (round(b)!=b) return false;
if (round(c)!=c) return false;
if (a+b==c or b+c==a) return true;
return false;
}
| missing logic | incorrect output | any_int | bool any_int(float a,float b,float c) | Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
any_int(5, 2, 7) β true
any_int(3, 2, 2) β false
any_int(3, -2, 1) β true
any_int(3.6, -2.2, 2) β false | Write a C++ function `bool any_int(float a,float b,float c)` to solve the following problem:
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
any_int(5, 2, 7) β true
any_int(3, 2, 2) β false
any_int(3, -2, 1) β true
any_int(3.6, -2.2, 2) β false |
CPP/93 | /*
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test")
"TGST"
>>> encode("This is a message")
'tHKS KS C MGSSCGG"
*/
#include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
string encode(string message){
| string vowels="aeiouAEIOU";
string out="";
for (int i=0;i<message.length();i++)
{
char w=message[i];
if (w>=97 and w<=122){w=w-32;}
else if (w>=65 and w<=90) w=w+32;
if (find(vowels.begin(),vowels.end(),w)!=vowels.end()) w=w+2;
out=out+w;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (encode("TEST") == "tgst");
assert (encode("Mudasir") == "mWDCSKR");
assert (encode("YES") == "ygs");
assert (encode("This is a message") == "tHKS KS C MGSSCGG");
assert (encode("I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg");
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
string encode(string message){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (encode("test") == "TGST");
assert (encode("This is a message") == "tHKS KS C MGSSCGG");
}
| string vowels="aeiou";
string out="";
for (int i=0;i<message.length();i++)
{
char w=message[i];
if (w>=97 and w<=122){w=w-32;}
else if (w>=65 and w<=90) w=w+32;
if (find(vowels.begin(),vowels.end(),w)!=vowels.end()) w=w+2;
out=out+w;
}
return out;
}
| missing logic | incorrect output | encode | string encode(string message) | Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test")
"TGST"
>>> encode("This is a message")
'tHKS KS C MGSSCGG" | Write a C++ function `string encode(string message)` to solve the following problem:
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test")
"TGST"
>>> encode("This is a message")
'tHKS KS C MGSSCGG" |
CPP/94 | /*
You are given a vector of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
For lst = {0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3} the output should be 10
For lst = {1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1} the output should be 25
For lst = {1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3} the output should be 13
For lst = {0,724,32,71,99,32,6,0,5,91,83,0,5,6} the output should be 11
For lst = {0,81,12,3,1,21} the output should be 3
For lst = {0,8,1,2,1,7} the output should be 7
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
int skjkasdkd(vector<int> lst){
| int largest=0;
for (int i=0;i<lst.size();i++)
if (lst[i]>largest)
{
bool prime=true;
for (int j=2;j*j<=lst[i];j++)
if (lst[i]%j==0) prime=false;
if (prime) largest=lst[i];
}
int sum=0;
string s;
s=to_string(largest);
for (int i=0;i<s.length();i++)
sum+=s[i]-48;
return sum;
}
#undef NDEBUG
#include<assert.h>
| #undef NDEBUG
#include<assert.h>
int main(){
assert (skjkasdkd({0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3}) == 10);
assert (skjkasdkd({1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1}) == 25);
assert (skjkasdkd({1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3}) == 13);
assert (skjkasdkd({0,724,32,71,99,32,6,0,5,91,83,0,5,6}) == 11);
assert (skjkasdkd({0,81,12,3,1,21}) == 3);
assert (skjkasdkd({0,8,1,2,1,7}) == 7);
assert (skjkasdkd({8191}) == 19);
assert (skjkasdkd({8191, 123456, 127, 7}) == 19);
assert (skjkasdkd({127, 97, 8192}) == 10);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int skjkasdkd(vector<int> lst){
| #undef NDEBUG
#include<assert.h>
#undef NDEBUG
#include<assert.h>
#undef NDEBUG
#include<assert.h>
int main(){
assert (skjkasdkd({0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3}) == 10);
assert (skjkasdkd({1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1}) == 25);
assert (skjkasdkd({1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3}) == 13);
assert (skjkasdkd({0,724,32,71,99,32,6,0,5,91,83,0,5,6}) == 11);
assert (skjkasdkd({0,81,12,3,1,21}) == 3);
assert (skjkasdkd({0,8,1,2,1,7}) == 7);
}
| int largest=0;
for (int i=0;i<lst.size();i++)
if (lst[i]>largest)
{
bool prime=false;
for (int j=2;j*j<=lst[i];j++)
if (lst[i]%j==0) prime=true;
if (prime) largest=lst[i];
}
int sum=0;
string s;
s=to_string(largest);
for (int i=0;i<s.length();i++)
sum+=s[i]-48;
return sum;
}
#undef NDEBUG
#include<assert.h>
| operator misuse | incorrect output | skjkasdkd | int skjkasdkd(vector<int> lst) | You are given a vector of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
For lst = {0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3} the output should be 10
For lst = {1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1} the output should be 25
For lst = {1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3} the output should be 13
For lst = {0,724,32,71,99,32,6,0,5,91,83,0,5,6} the output should be 11
For lst = {0,81,12,3,1,21} the output should be 3
For lst = {0,8,1,2,1,7} the output should be 7 | Write a C++ function `int skjkasdkd(vector<int> lst)` to solve the following problem:
You are given a vector of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
For lst = {0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3} the output should be 10
For lst = {1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1} the output should be 25
For lst = {1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3} the output should be 13
For lst = {0,724,32,71,99,32,6,0,5,91,83,0,5,6} the output should be 11
For lst = {0,81,12,3,1,21} the output should be 3
For lst = {0,8,1,2,1,7} the output should be 7 |
CPP/95 | /*
Given a map, return true if all keys are strings in lower
case or all keys are strings in upper case, else return false.
The function should return false is the given map is empty.
Examples:
check_map_case({{"a","apple"}, {"b","banana"}}) should return true.
check_map_case({{"a","apple"}, {"A","banana"}, {"B","banana"}}) should return false.
check_map_case({{"a","apple"}, {"8","banana"}, {"a","apple"}}) should return false.
check_map_case({{"Name","John"}, {"Age","36"}, {"City","Houston"}}) should return false.
check_map_case({{"STATE","NC"}, {"ZIP","12345"} }) should return true.
*/
#include<stdio.h>
#include<string>
#include<map>
using namespace std;
bool check_dict_case(map<string,string> dict){
| map<string,string>::iterator it;
int islower=0,isupper=0;
if (dict.size()==0) return false;
for (it=dict.begin();it!=dict.end();it++)
{
string key=it->first;
for (int i=0;i<key.length();i++)
{
if (key[i]<65 or (key[i]>90 and key[i]<97) or key[i]>122) return false;
if (key[i]>=65 and key[i]<=90) isupper=1;
if (key[i]>=97 and key[i]<=122) islower=1;
if (isupper+islower==2) return false;
}
}
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (check_dict_case({{"p","pineapple"}, {"b","banana"}}) == true);
assert (check_dict_case({{"p","pineapple"}, {"A","banana"}, {"B","banana"}}) == false);
assert (check_dict_case({{"p","pineapple"}, {"5","banana"}, {"a","apple"}}) == false);
assert (check_dict_case({{"Name","John"}, {"Age","36"}, {"City","Houston"}}) == false);
assert (check_dict_case({{"STATE","NC"}, {"ZIP","12345"} }) == true );
assert (check_dict_case({{"fruit","Orange"}, {"taste","Sweet"} }) == true );
assert (check_dict_case({}) == false);
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<map>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool check_dict_case(map<string,string> dict){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (check_dict_case({{"p","pineapple"}, {"b","banana"}}) == true);
assert (check_dict_case({{"p","pineapple"}, {"A","banana"}, {"B","banana"}}) == false);
assert (check_dict_case({{"p","pineapple"}, {"5","banana"}, {"a","apple"}}) == false);
assert (check_dict_case({{"Name","John"}, {"Age","36"}, {"City","Houston"}}) == false);
assert (check_dict_case({{"STATE","NC"}, {"ZIP","12345"} }) == true );
}
| map<string,string>::iterator it;
int islower=0,isupper=0;
if (dict.size()==0) return false;
for (it=dict.begin();it!=dict.end();it++)
{
string key=it->first;
for (int i=0;i<key.length();i++)
{
if (key[i]<65 or (key[i]>90 and key[i]<97) or key[i]>122) return false;
if (key[i]>=65 and key[i]<=90) isupper=1;
if (key[i]>=97 and key[i]<=122) islower=1;
if (isupper-islower==2) return false;
}
}
return true;
}
| operator misuse | incorrect output | check_dict_case | bool check_dict_case(map<string,string> dict) | Given a map, return true if all keys are strings in lower
case or all keys are strings in upper case, else return false.
The function should return false is the given map is empty.
Examples:
check_map_case({{"a","apple"}, {"b","banana"}}) should return true.
check_map_case({{"a","apple"}, {"A","banana"}, {"B","banana"}}) should return false.
check_map_case({{"a","apple"}, {"8","banana"}, {"a","apple"}}) should return false.
check_map_case({{"Name","John"}, {"Age","36"}, {"City","Houston"}}) should return false.
check_map_case({{"STATE","NC"}, {"ZIP","12345"} }) should return true. | Write a C++ function `bool check_dict_case(map<string,string> dict)` to solve the following problem:
Given a map, return true if all keys are strings in lower
case or all keys are strings in upper case, else return false.
The function should return false is the given map is empty.
Examples:
check_map_case({{"a","apple"}, {"b","banana"}}) should return true.
check_map_case({{"a","apple"}, {"A","banana"}, {"B","banana"}}) should return false.
check_map_case({{"a","apple"}, {"8","banana"}, {"a","apple"}}) should return false.
check_map_case({{"Name","John"}, {"Age","36"}, {"City","Houston"}}) should return false.
check_map_case({{"STATE","NC"}, {"ZIP","12345"} }) should return true. |
CPP/96 | /*
Implement a function that takes an non-negative integer and returns a vector of the first n
integers that are prime numbers and less than n.
for example:
count_up_to(5) => {2,3}
count_up_to(11) => {2,3,5,7}
count_up_to(0) => {}
count_up_to(20) => {2,3,5,7,11,13,17,19}
count_up_to(1) => {}
count_up_to(18) => {2,3,5,7,11,13,17}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> count_up_to(int n){
| vector<int> out={};
int i,j;
for (i=2;i<n;i++)
if (out.size()==0) {out.push_back(i);}
else
{
bool isp=true;
for (j=0;out[j]*out[j]<=i;j++)
if (i%out[j]==0) isp=false;
if (isp) out.push_back(i);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(count_up_to(5) , {2,3}));
assert (issame(count_up_to(6) , {2,3,5}));
assert (issame(count_up_to(7) , {2,3,5}));
assert (issame(count_up_to(10) , {2,3,5,7}));
assert (issame(count_up_to(0) , {}));
assert (issame(count_up_to(22) , {2,3,5,7,11,13,17,19}));
assert (issame(count_up_to(1) , {}));
assert (issame(count_up_to(18) , {2,3,5,7,11,13,17}));
assert (issame(count_up_to(47) , {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43}));
assert (issame(count_up_to(101) , {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> count_up_to(int n){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(count_up_to(5) , {2,3}));
assert (issame(count_up_to(11) , {2,3,5,7}));
assert (issame(count_up_to(0) , {}));
assert (issame(count_up_to(20) , {2,3,5,7,11,13,17,19}));
assert (issame(count_up_to(1) , {}));
assert (issame(count_up_to(18) , {2,3,5,7,11,13,17}));
}
| vector<int> out={};
int i,j;
for (i=2;i<n;i++)
if (out.size()==0) {out.push_back(i);}
else
{
bool isp=true;
for (j=0;out[j]*out[j]<=i;j++)
if (i%j==0) isp=false;
if (isp) out.push_back(i);
}
return out;
}
| variable misuse | incorrect output | count_up_to | vector<int> count_up_to(int n) | Implement a function that takes an non-negative integer and returns a vector of the first n
integers that are prime numbers and less than n.
for example:
count_up_to(5) => {2,3}
count_up_to(11) => {2,3,5,7}
count_up_to(0) => {}
count_up_to(20) => {2,3,5,7,11,13,17,19}
count_up_to(1) => {}
count_up_to(18) => {2,3,5,7,11,13,17} | Write a C++ function `vector<int> count_up_to(int n)` to solve the following problem:
Implement a function that takes an non-negative integer and returns a vector of the first n
integers that are prime numbers and less than n.
for example:
count_up_to(5) => {2,3}
count_up_to(11) => {2,3,5,7}
count_up_to(0) => {}
count_up_to(20) => {2,3,5,7,11,13,17,19}
count_up_to(1) => {}
count_up_to(18) => {2,3,5,7,11,13,17} |
CPP/97 | /*
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(148, 412) should return 16.
multiply(19, 28) should return 72.
multiply(2020, 1851) should return 0.
multiply(14,-15) should return 20.
*/
#include<stdio.h>
#include<math.h>
using namespace std;
int multiply(int a,int b){
| return (abs(a)%10)*(abs(b)%10);
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (multiply(148, 412) == 16 );
assert (multiply(19, 28) == 72 );
assert (multiply(2020, 1851) == 0);
assert (multiply(14,-15) == 20 );
assert (multiply(76, 67) == 42 );
assert (multiply(17, 27) == 49 );
assert (multiply(0, 1) == 0);
assert (multiply(0, 0) == 0);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int multiply(int a,int b){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (multiply(148, 412) == 16 );
assert (multiply(19, 28) == 72 );
assert (multiply(2020, 1851) == 0);
assert (multiply(14,-15) == 20 );
}
| return (abs(a)%10)*(abs(b)%10)*a*b;
}
| excess logic | incorrect output | multiply | int multiply(int a,int b) | Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(148, 412) should return 16.
multiply(19, 28) should return 72.
multiply(2020, 1851) should return 0.
multiply(14,-15) should return 20. | Write a C++ function `int multiply(int a,int b)` to solve the following problem:
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(148, 412) should return 16.
multiply(19, 28) should return 72.
multiply(2020, 1851) should return 0.
multiply(14,-15) should return 20. |
CPP/98 | /*
Given a string s, count the number of uppercase vowels in even indices.
For example:
count_upper("aBCdEf") returns 1
count_upper("abcdefg") returns 0
count_upper("dBBE") returns 0
*/
#include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
int count_upper(string s){
| string uvowel="AEIOU";
int count=0;
for (int i=0;i*2<s.length();i++)
if (find(uvowel.begin(),uvowel.end(),s[i*2])!=uvowel.end())
count+=1;
return count;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (count_upper("aBCdEf") == 1);
assert (count_upper("abcdefg") == 0);
assert (count_upper("dBBE") == 0);
assert (count_upper("B") == 0);
assert (count_upper("U") == 1);
assert (count_upper("") == 0);
assert (count_upper("EEEE") == 2);
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int count_upper(string s){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (count_upper("aBCdEf") == 1);
assert (count_upper("abcdefg") == 0);
assert (count_upper("dBBE") == 0);
}
| string uvowel="AEIOU";
int count=0;
for (int i=0;i*2<s.length();i++)
if (find(uvowel.begin(),uvowel.end(),s[i*2])!=uvowel.end())
count+=2;
return count;
}
| value misuse | incorrect output | count_upper | int count_upper(string s) | Given a string s, count the number of uppercase vowels in even indices.
For example:
count_upper("aBCdEf") returns 1
count_upper("abcdefg") returns 0
count_upper("dBBE") returns 0 | Write a C++ function `int count_upper(string s)` to solve the following problem:
Given a string s, count the number of uppercase vowels in even indices.
For example:
count_upper("aBCdEf") returns 1
count_upper("abcdefg") returns 0
count_upper("dBBE") returns 0 |
CPP/99 | /*
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer("10")
10
>>> closest_integer("15.3")
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
*/
#include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
int closest_integer(string value){
| double w;
w=atof(value.c_str());
return round(w);
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (closest_integer("10") == 10);
assert (closest_integer("14.5") == 15);
assert (closest_integer("-15.5") == -16);
assert (closest_integer("15.3") == 15);
assert (closest_integer("0") == 0);
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int closest_integer(string value){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (closest_integer("10") == 10);
assert (closest_integer("15.3") == 15);
}
| double w;
w=atof(value.c_str());
return floor(w);
}
| function misuse | incorrect output | closest_integer | int closest_integer(string value) | Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer("10")
10
>>> closest_integer("15.3")
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15. | Write a C++ function `int closest_integer(string value)` to solve the following problem:
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer("10")
10
>>> closest_integer("15.3")
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15. |