Datasets:
Tasks:
Depth Estimation
Modalities:
Image
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
depth-estimation
License:
initial commit.
Browse files- nyu_depth_v2.py +134 -0
nyu_depth_v2.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""NYU-Depth V2."""
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
import h5py
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@inproceedings{Silberman:ECCV12,
|
25 |
+
author = {Nathan Silberman, Derek Hoiem, Pushmeet Kohli and Rob Fergus},
|
26 |
+
title = {Indoor Segmentation and Support Inference from RGBD Images},
|
27 |
+
booktitle = {ECCV},
|
28 |
+
year = {2012}
|
29 |
+
}
|
30 |
+
@inproceedings{icra_2019_fastdepth,
|
31 |
+
author = {Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju and Karaman, Sertac and Sze, Vivienne},
|
32 |
+
title = {FastDepth: Fast Monocular Depth Estimation on Embedded Systems},
|
33 |
+
booktitle = {IEEE International Conference on Robotics and Automation (ICRA)},
|
34 |
+
year = {2019}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
The NYU-Depth V2 data set is comprised of video sequences from a variety of indoor scenes as recorded by both the RGB and Depth cameras from the Microsoft Kinect.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_HOMEPAGE = "https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html"
|
43 |
+
|
44 |
+
_LICENSE = "Apace 2.0 License"
|
45 |
+
|
46 |
+
_URLS = {
|
47 |
+
"depth_estimation": {
|
48 |
+
"train/val": "http://datasets.lids.mit.edu/fastdepth/data/nyudepthv2.tar.gz",
|
49 |
+
}
|
50 |
+
}
|
51 |
+
|
52 |
+
_IMG_EXTENSIONS = [".h5"]
|
53 |
+
|
54 |
+
|
55 |
+
class NYUDepthV2(datasets.GeneratorBasedBuilder):
|
56 |
+
"""NYU-Depth V2 dataset."""
|
57 |
+
|
58 |
+
VERSION = datasets.Version("1.0.0")
|
59 |
+
|
60 |
+
BUILDER_CONFIGS = [
|
61 |
+
datasets.BuilderConfig(
|
62 |
+
name="depth_estimation",
|
63 |
+
version=VERSION,
|
64 |
+
description="The depth estimation variant.",
|
65 |
+
),
|
66 |
+
]
|
67 |
+
|
68 |
+
DEFAULT_CONFIG_NAME = "depth_estimation"
|
69 |
+
|
70 |
+
def _info(self):
|
71 |
+
features = datasets.Features(
|
72 |
+
{"image": datasets.Image(), "depth_map": datasets.Image()}
|
73 |
+
)
|
74 |
+
return datasets.DatasetInfo(
|
75 |
+
description=_DESCRIPTION,
|
76 |
+
features=features,
|
77 |
+
homepage=_HOMEPAGE,
|
78 |
+
license=_LICENSE,
|
79 |
+
citation=_CITATION,
|
80 |
+
)
|
81 |
+
|
82 |
+
def _is_image_file(self, filename):
|
83 |
+
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L21-L23
|
84 |
+
return any(filename.endswith(extension) for extension in _IMG_EXTENSIONS)
|
85 |
+
|
86 |
+
def _get_file_paths(self, dir):
|
87 |
+
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L31-L44
|
88 |
+
file_paths = []
|
89 |
+
dir = os.path.expanduser(dir)
|
90 |
+
|
91 |
+
for target in sorted(os.listdir(dir)):
|
92 |
+
d = os.path.join(dir, target)
|
93 |
+
if not os.path.isdir(d):
|
94 |
+
continue
|
95 |
+
for root, _, fnames in sorted(os.walk(d)):
|
96 |
+
for fname in sorted(fnames):
|
97 |
+
if self._is_image_file(fname):
|
98 |
+
path = os.path.join(root, fname)
|
99 |
+
file_paths.append(path)
|
100 |
+
|
101 |
+
return file_paths
|
102 |
+
|
103 |
+
def _h5_loader(self, path):
|
104 |
+
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13
|
105 |
+
h5f = h5py.File(path, "r")
|
106 |
+
rgb = np.array(h5f["rgb"])
|
107 |
+
rgb = np.transpose(rgb, (1, 2, 0))
|
108 |
+
depth = np.array(h5f["depth"])
|
109 |
+
return rgb, depth
|
110 |
+
|
111 |
+
def _split_generators(self, dl_manager):
|
112 |
+
urls = _URLS[self.config.name]
|
113 |
+
base_path = dl_manager.download_and_extract(urls)
|
114 |
+
|
115 |
+
train_data_files = self._get_file_paths(
|
116 |
+
os.path.join(base_path, "nyudepthv2", "train")
|
117 |
+
)
|
118 |
+
val_data_files = self._get_file_paths(os.path.join(base_path, "nyudepthv2" "val"))
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={"data": train_data_files, "split": "training"},
|
124 |
+
),
|
125 |
+
datasets.SplitGenerator(
|
126 |
+
name=datasets.Split.VALIDATION,
|
127 |
+
gen_kwargs={"data": val_data_files, "split": "validation"},
|
128 |
+
),
|
129 |
+
]
|
130 |
+
|
131 |
+
def _generate_examples(self, filepaths):
|
132 |
+
for idx, filepath in enumerate(filepaths):
|
133 |
+
image, depth = self._h5_loader(filepath)
|
134 |
+
yield idx, {"image": image, "depth_map": depth}
|