--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': airplane '1': alarm clock '2': angel '3': ant '4': apple '5': arm '6': armchair '7': ashtray '8': axe '9': backpack '10': banana '11': barn '12': baseball bat '13': basket '14': bathtub '15': bear (animal) '16': bed '17': bee '18': beer-mug '19': bell '20': bench '21': bicycle '22': binoculars '23': blimp '24': book '25': bookshelf '26': boomerang '27': bottle opener '28': bowl '29': brain '30': bread '31': bridge '32': bulldozer '33': bus '34': bush '35': butterfly '36': cabinet '37': cactus '38': cake '39': calculator '40': camel '41': camera '42': candle '43': cannon '44': canoe '45': car (sedan) '46': carrot '47': castle '48': cat '49': cell phone '50': chair '51': chandelier '52': church '53': cigarette '54': cloud '55': comb '56': computer monitor '57': computer-mouse '58': couch '59': cow '60': crab '61': crane (machine) '62': crocodile '63': crown '64': cup '65': diamond '66': dog '67': dolphin '68': donut '69': door '70': door handle '71': dragon '72': duck '73': ear '74': elephant '75': envelope '76': eye '77': eyeglasses '78': face '79': fan '80': feather '81': fire hydrant '82': fish '83': flashlight '84': floor lamp '85': flower with stem '86': flying bird '87': flying saucer '88': foot '89': fork '90': frog '91': frying-pan '92': giraffe '93': grapes '94': grenade '95': guitar '96': hamburger '97': hammer '98': hand '99': harp '100': hat '101': head '102': head-phones '103': hedgehog '104': helicopter '105': helmet '106': horse '107': hot air balloon '108': hot-dog '109': hourglass '110': house '111': human-skeleton '112': ice-cream-cone '113': ipod '114': kangaroo '115': key '116': keyboard '117': knife '118': ladder '119': laptop '120': leaf '121': lightbulb '122': lighter '123': lion '124': lobster '125': loudspeaker '126': mailbox '127': megaphone '128': mermaid '129': microphone '130': microscope '131': monkey '132': moon '133': mosquito '134': motorbike '135': mouse (animal) '136': mouth '137': mug '138': mushroom '139': nose '140': octopus '141': owl '142': palm tree '143': panda '144': paper clip '145': parachute '146': parking meter '147': parrot '148': pear '149': pen '150': penguin '151': person sitting '152': person walking '153': piano '154': pickup truck '155': pig '156': pigeon '157': pineapple '158': pipe (for smoking) '159': pizza '160': potted plant '161': power outlet '162': present '163': pretzel '164': pumpkin '165': purse '166': rabbit '167': race car '168': radio '169': rainbow '170': revolver '171': rifle '172': rollerblades '173': rooster '174': sailboat '175': santa claus '176': satellite '177': satellite dish '178': saxophone '179': scissors '180': scorpion '181': screwdriver '182': sea turtle '183': seagull '184': shark '185': sheep '186': ship '187': shoe '188': shovel '189': skateboard '190': skull '191': skyscraper '192': snail '193': snake '194': snowboard '195': snowman '196': socks '197': space shuttle '198': speed-boat '199': spider '200': sponge bob '201': spoon '202': squirrel '203': standing bird '204': stapler '205': strawberry '206': streetlight '207': submarine '208': suitcase '209': sun '210': suv '211': swan '212': sword '213': syringe '214': t-shirt '215': table '216': tablelamp '217': teacup '218': teapot '219': teddy-bear '220': telephone '221': tennis-racket '222': tent '223': tiger '224': tire '225': toilet '226': tomato '227': tooth '228': toothbrush '229': tractor '230': traffic light '231': train '232': tree '233': trombone '234': trousers '235': truck '236': trumpet '237': tv '238': umbrella '239': van '240': vase '241': violin '242': walkie talkie '243': wheel '244': wheelbarrow '245': windmill '246': wine-bottle '247': wineglass '248': wrist-watch '249': zebra splits: - name: train num_bytes: 480609419.0 num_examples: 16000 - name: validation num_bytes: 59693656.0 num_examples: 2000 - name: test num_bytes: 60354461.0 num_examples: 2000 download_size: 589082694 dataset_size: 600657536.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # Dataset Card for TU Berline Dataset This dataset card aims to provide comprehensive information about the TU Berlin dataset, a collection of hand-drawn sketches used for training and evaluating sketch classification models. ## Dataset Details ### Dataset Description The TU Berlin dataset is a large-scale collection of hand-drawn sketches curated by the research team at TU Berlin. The dataset includes 20,000 unique sketches across 250 object categories, contributed by participants from around the world. The primary purpose of this dataset is to facilitate research in the field of computer vision, particularly for tasks related to sketch recognition and classification. - **Curated by:** TU Berlin research team - **Shared by [optional]:** TU Berlin ### Dataset Sources - **Source:** [TU Berlin Dataset Source](https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/) - **Paper:** [TU Berlin Dataset Paper](https://cybertron.cg.tu-berlin.de/eitz/pdf/2012_siggraph_classifysketch.pdf) ## Uses ### Direct Use The dataset is intended for use in developing and evaluating sketch recognition algorithms. It is suitable for tasks such as: - Training sketch classification models - Evaluating the performance of sketch recognition systems - Conducting research in computer vision and machine learning related to hand-drawn images ### Out-of-Scope Use The dataset is not suitable for use cases that require high-resolution images or photographs. It is also not intended for tasks unrelated to sketch recognition, such as natural image classification. ## Dataset Structure The dataset is organized into categories, each containing a collection of hand-drawn sketches. Each sketch is a black-and-white image representing an object from one of the predefined categories. - **Number of Categories:** 250 - **Number of Sketches:** 20,000 ### Dataset Splits I downloaded the TU Berlin dataset and split it into train set, validation set, and test set. - **Train Set:** - **Number of Examples:** 16,000 - **Size:** 480,609,419 bytes - **Validation Set:** - **Number of Examples:** 2,000 - **Size:** 59,693,656 bytes - **Test Set:** - **Number of Examples:** 2,000 - **Size:** 60,354,461 bytes - **Download Size:** 589,085,954 bytes - **Total Dataset Size:** 600,657,536 bytes The data was split using the following code: ```python from sklearn.model_selection import train_test_split train_data, temp_data = train_test_split(metadata, test_size=0.2, random_state=42) val_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42) ``` ## Citation **BibTeX:** ```bibtex @article{eitz2012hdhso, author={Eitz, Mathias and Hays, James and Alexa, Marc}, title={How Do Humans Sketch Objects?}, journal={ACM Trans. Graph. (Proc. SIGGRAPH)}, year={2012}, volume={31}, number={4}, pages = {44:1--44:10} }