File size: 7,789 Bytes
8aa388d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# coding=utf-8
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the MIT License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://mit-license.org/
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Voice Command Audio Dataset"""


import csv
import os
import json

import datasets
from datasets.utils.py_utils import size_str
from tqdm import tqdm

from .languages import LANGUAGES
from .release_stats import STATS


_CITATION = """\
@inproceedings{none,
  author = {shaodw_wxh},
  title = {Voice Command: A General Purpose Speech Reconginition Gaming Interface},
  booktitle = {},
  pages = {1-10},
  year = 2024
}
"""

_HOMEPAGE = "https://www.shadow_wxh.org/"

_LICENSE = "https://mit-license.org/"

# TODO: change "streaming" to "main" after merge!
_BASE_URL = "https://huggingface.co/datasets/shadow-wxh/VoiceCommandAudio/resolve/main/"

_AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar"

_TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}.tsv"

_N_SHARDS_URL = _BASE_URL + "n_shards.json"


class CommonVoiceConfig(datasets.BuilderConfig):
    """BuilderConfig for Voice Command Audio."""

    def __init__(self, name, version, **kwargs):
        self.language = kwargs.pop("language", None)
        self.release_date = kwargs.pop("release_date", None)
        self.num_clips = kwargs.pop("num_clips", None)
        self.num_speakers = kwargs.pop("num_speakers", None)
        self.validated_hr = kwargs.pop("validated_hr", None)
        self.total_hr = kwargs.pop("total_hr", None)
        self.size_bytes = kwargs.pop("size_bytes", None)
        self.size_human = size_str(self.size_bytes)
        description = (
            f"Voice Command Audio dataset in {self.language} released on {self.release_date}. "
            f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data "
            f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. "
            f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}."
        )
        super(CommonVoiceConfig, self).__init__(
            name=name,
            version=datasets.Version(version),
            description=description,
            **kwargs,
        )


class CommonVoice(datasets.GeneratorBasedBuilder):
    DEFAULT_WRITER_BATCH_SIZE = 1000

    BUILDER_CONFIGS = [
        CommonVoiceConfig(
            name=lang,
            version=STATS["version"],
            language=LANGUAGES[lang],
            release_date=STATS["date"],
            num_clips=lang_stats["clips"],
            num_speakers=lang_stats["users"],
            validated_hr=float(lang_stats["validHrs"]) if lang_stats["validHrs"] else None,
            total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None,
            size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None,
        )
        for lang, lang_stats in STATS["locales"].items()
    ]

    def _info(self):
        total_languages = len(STATS["locales"])
        total_valid_hours = STATS["totalValidHrs"]
        description = (
            "Voice Command Audio is a dataset to help fine tune Voice Command a geral purpose speech recongnition gaming interface. "
            f"The dataset currently consists of {total_valid_hours} validated hours of speech "
            f" in {total_languages} languages, but more voices and languages are always added."
        )
        features = datasets.Features(
            {
                "client_id": datasets.Value("string"),
                "path": datasets.Value("string"),
                "audio": datasets.features.Audio(sampling_rate=16_000),
                "sentence": datasets.Value("string"),
                "up_votes": datasets.Value("int64"),
                "down_votes": datasets.Value("int64"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accent": datasets.Value("string"),
                "locale": datasets.Value("string"),
                "segment": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            description=description,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            version=self.config.version,
        )

    def _split_generators(self, dl_manager):
        lang = self.config.name
        n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
        with open(n_shards_path, encoding="utf-8") as f:
            n_shards = json.load(f)

        audio_urls = {}
        splits = ("train", "test")
        for split in splits:
            audio_urls[split] = [
                _AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split])
            ]
        archive_paths = dl_manager.download(audio_urls)
        local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}

        meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits}
        meta_paths = dl_manager.download_and_extract(meta_urls)

        split_generators = []
        split_names = {
            "train": datasets.Split.TRAIN,
            "test": datasets.Split.TEST,
        }
        for split in splits:
            split_generators.append(
                datasets.SplitGenerator(
                    name=split_names.get(split, split),
                    gen_kwargs={
                        "local_extracted_archive_paths": local_extracted_archive_paths.get(split),
                        "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
                        "meta_path": meta_paths[split],
                    },
                ),
            )

        return split_generators

    def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
        data_fields = list(self._info().features.keys())
        metadata = {}
        with open(meta_path, encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
            for row in tqdm(reader, desc="Reading metadata..."):
                if not row["path"].endswith(".wav"):
                    row["path"] += ".wav"
                # accent -> accents in CV 8.0
                if "accents" in row:
                    row["accent"] = row["accents"]
                    del row["accents"]
                # if data is incomplete, fill with empty values
                for field in data_fields:
                    if field not in row:
                        row[field] = ""
                metadata[row["path"]] = row

        for i, audio_archive in enumerate(archives):
            for path, file in audio_archive:
                _, filename = os.path.split(path)
                if filename in metadata:
                    result = dict(metadata[filename])
                    # set the audio feature and the path to the extracted file
                    path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
                    result["audio"] = {"path": path, "bytes": file.read()}
                    result["path"] = path
                    yield path, result