shangzhu commited on
Commit
f5c730c
1 Parent(s): 0d5d234

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md CHANGED
@@ -37,3 +37,55 @@ configs:
37
  - split: test
38
  path: data/test-*
39
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  - split: test
38
  path: data/test-*
39
  ---
40
+
41
+ # Dataset Card for ChemQA
42
+
43
+ Introducing ChemQA: a Multimodal Question-and-Answering Dataset on Chemistry Reasoning. This work is inspired by IsoBench[1] and ChemLLMBench[2].
44
+
45
+
46
+ ## Content
47
+
48
+ There are 5 QA Tasks in total:
49
+ * Counting Numbers of Carbons and Hydrogens in Organic Molecules: adapted from the 600 PubChem molecules created from [2], evenly divided into validation and evaluation datasets.
50
+ * Calculating Molecular Weights in Organic Molecules: adapted from the 600 PubChem molecules created from [2], evenly divided into validation and evaluation datasets.
51
+ * Name Conversion: From SMILES to IUPAC: adapted from the 600 PubChem molecules created from [2], evenly divided into validation and evaluation datasets.
52
+ * Molecule Captioning and Editing: inspired by [2], adapted from dataset provided in [3], following the same training, validation and evaluation splits.
53
+ * Retro-synthesis Planning: inspired by [2], adapted from dataset provided in [4], following the same training, validation and evaluation splits.
54
+
55
+ ## Load the Dataset
56
+
57
+ ```python
58
+ from datasets import load_dataset
59
+ dataset_train = load_dataset('shangzhu/ChemQA', split='train')
60
+ dataset_valid = load_dataset('shangzhu/ChemQA', split='valid')
61
+ dataset_test = load_dataset('shangzhu/ChemQA', split='test')
62
+ ```
63
+
64
+ ## Reference
65
+
66
+ [1] Fu, D., Khalighinejad, G., Liu, O., Dhingra, B., Yogatama, D., Jia, R., & Neiswanger, W. (2024). IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations.
67
+
68
+ [2] Guo, T., Guo, kehan, Nan, B., Liang, Z., Guo, Z., Chawla, N., Wiest, O., & Zhang, X. (2023). What can Large Language Models do in chemistry? A comprehensive benchmark on eight tasks. Advances in Neural Information Processing Systems (Vol. 36, pp. 59662–59688).
69
+
70
+ [3] Edwards, C., Lai, T., Ros, K., Honke, G., Cho, K., & Ji, H. (2022). Translation between Molecules and Natural Language. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 375–413.
71
+
72
+ [4] Irwin, R., Dimitriadis, S., He, J., & Bjerrum, E. J. (2022). Chemformer: a pre-trained transformer for computational chemistry. Machine Learning: Science and Technology, 3(1), 15022.
73
+
74
+
75
+
76
+ ## Citation
77
+
78
+ ```BibTeX
79
+ @misc{chemQA2024,
80
+ title={ChemQA: a Multimodal Question-and-Answering Dataset on Chemistry Reasoning},
81
+ author={Shang Zhu and Xuefeng Liu and Ghazal Khalighinejad},
82
+ year={2024},
83
+ publisher={Hugging Face},
84
+ howpublished={\url{https://huggingface.co/datasets/shangzhu/ChemQA}},
85
+ }
86
+ ```
87
+
88
+
89
+ ## Contact
90
+
91
+ shangzhu@umich.edu