|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ChrEn: Cherokee-English Machine Translation data""" |
|
|
|
|
|
import openpyxl |
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{zhang2020chren, |
|
title={ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization}, |
|
author={Zhang, Shiyue and Frey, Benjamin and Bansal, Mohit}, |
|
booktitle={EMNLP2020}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ChrEn is a Cherokee-English parallel dataset to facilitate machine translation research between Cherokee and English. |
|
ChrEn is extremely low-resource contains 14k sentence pairs in total, split in ways that facilitate both in-domain and out-of-domain evaluation. |
|
ChrEn also contains 5k Cherokee monolingual data to enable semi-supervised learning. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ZhangShiyue/ChrEn" |
|
|
|
_LICENSE = "" |
|
|
|
_URLs = { |
|
"monolingual_raw": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/raw/monolingual_data.xlsx", |
|
"parallel_raw": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/raw/parallel_data.xlsx", |
|
"monolingual_chr": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/chr", |
|
"monolingual_en5000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en5000", |
|
"monolingual_en10000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en10000", |
|
"monolingual_en20000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en20000", |
|
"monolingual_en50000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en50000", |
|
"monolingual_en100000": "https://raw.githubusercontent.com/ZhangShiyue/ChrEn/main/data/monolingual/en100000", |
|
"parallel_train.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/train.chr", |
|
"parallel_train.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/train.en", |
|
"parallel_dev.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/dev.chr", |
|
"parallel_dev.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/dev.en", |
|
"parallel_out_dev.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/out_dev.chr", |
|
"parallel_out_dev.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/out_dev.en", |
|
"parallel_test.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/test.chr", |
|
"parallel_test.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/test.en", |
|
"parallel_out_test.chr": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/out_test.chr", |
|
"parallel_out_test.en": "https://github.com/ZhangShiyue/ChrEn/raw/main/data/parallel/out_test.en", |
|
} |
|
|
|
|
|
|
|
class ChrEn(datasets.GeneratorBasedBuilder): |
|
"""ChrEn: Cherokee-English Machine Translation data.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="monolingual_raw", version=VERSION, description="Monolingual data with metadata"), |
|
datasets.BuilderConfig(name="parallel_raw", version=VERSION, description="Parallel data with metadata"), |
|
datasets.BuilderConfig(name="monolingual", version=VERSION, description="Monolingual data text only"), |
|
datasets.BuilderConfig( |
|
name="parallel", version=VERSION, description="Parallel data text pairs only with default split" |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = ( |
|
"parallel" |
|
) |
|
|
|
def _info(self): |
|
if ( |
|
self.config.name == "monolingual_raw" |
|
): |
|
features = datasets.Features( |
|
{ |
|
"text_sentence": datasets.Value("string"), |
|
"text_title": datasets.Value("string"), |
|
"speaker": datasets.Value("string"), |
|
"date": datasets.Value("int32"), |
|
"type": datasets.Value("string"), |
|
"dialect": datasets.Value("string"), |
|
} |
|
) |
|
elif ( |
|
self.config.name == "parallel_raw" |
|
): |
|
features = datasets.Features( |
|
{ |
|
"line_number": datasets.Value("string"), |
|
"sentence_pair": datasets.Translation(languages=["en", "chr"]), |
|
"text_title": datasets.Value("string"), |
|
"speaker": datasets.Value("string"), |
|
"date": datasets.Value("int32"), |
|
"type": datasets.Value("string"), |
|
"dialect": datasets.Value("string"), |
|
} |
|
) |
|
elif ( |
|
self.config.name == "parallel" |
|
): |
|
features = datasets.Features( |
|
{ |
|
"sentence_pair": datasets.Translation(languages=["en", "chr"]), |
|
} |
|
) |
|
elif ( |
|
self.config.name == "monolingual" |
|
): |
|
features = datasets.Features( |
|
{ |
|
"sentence": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download(_URLs) |
|
if self.config.name in [ |
|
"monolingual_raw", |
|
"parallel_raw", |
|
]: |
|
return [ |
|
datasets.SplitGenerator( |
|
name="full", |
|
gen_kwargs={ |
|
"filepaths": data_dir, |
|
"split": "full", |
|
}, |
|
) |
|
] |
|
elif self.config.name == "monolingual": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=spl, |
|
gen_kwargs={ |
|
"filepaths": data_dir, |
|
"split": spl, |
|
}, |
|
) |
|
for spl in ["chr", "en5000", "en10000", "en20000", "en50000", "en100000"] |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=spl, |
|
gen_kwargs={ |
|
"filepaths": data_dir, |
|
"split": spl, |
|
}, |
|
) |
|
for spl in ["train", "dev", "out_dev", "test", "out_test"] |
|
] |
|
|
|
def _generate_examples(self, filepaths, split): |
|
if self.config.name == "monolingual_raw": |
|
keys = ["text_sentence", "text_title", "speaker", "date", "type", "dialect"] |
|
with open(filepaths["monolingual_raw"], "rb") as f: |
|
monolingual = pd.read_excel(f, engine="openpyxl") |
|
for id_, row in enumerate(monolingual.itertuples()): |
|
yield id_, dict(zip(keys, row[1:])) |
|
elif self.config.name == "parallel_raw": |
|
keys = ["line_number", "en_sent", "chr_sent", "text_title", "speaker", "date", "type", "dialect"] |
|
with open(filepaths["parallel_raw"], "rb") as f: |
|
parallel = pd.read_excel(f, engine="openpyxl") |
|
for id_, row in enumerate(parallel.itertuples()): |
|
res = dict(zip(keys, row[1:])) |
|
res["sentence_pair"] = {"en": res["en_sent"], "chr": res["chr_sent"]} |
|
res["line_number"] = str(res["line_number"]) |
|
del res["en_sent"] |
|
del res["chr_sent"] |
|
yield id_, res |
|
elif self.config.name == "monolingual": |
|
f = open(filepaths[f"monolingual_{split}"], encoding="utf-8") |
|
for id_, line in enumerate(f): |
|
yield id_, {"sentence": line.strip()} |
|
elif self.config.name == "parallel": |
|
fi = open(filepaths[f"parallel_{split}.en"], encoding="utf-8") |
|
fo = open(filepaths[f"parallel_{split}.chr"], encoding="utf-8") |
|
for id_, (line_en, line_chr) in enumerate(zip(fi, fo)): |
|
yield id_, {"sentence_pair": {"en": line_en.strip(), "chr": line_chr.strip()}} |
|
|