Datasets:
first commit data loader
Browse files- dataset_infos.json +224 -0
- kobest_v1.0.py +202 -0
dataset_infos.json
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"boolq": {
|
3 |
+
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
4 |
+
"citation": " TBD\n",
|
5 |
+
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
6 |
+
"license": "",
|
7 |
+
"features": {
|
8 |
+
"paragraph": {
|
9 |
+
"dtype": "string",
|
10 |
+
"id": null,
|
11 |
+
"_type": "Value"
|
12 |
+
},
|
13 |
+
"question": {
|
14 |
+
"dtype": "string",
|
15 |
+
"id": null,
|
16 |
+
"_type": "Value"
|
17 |
+
},
|
18 |
+
"label": {
|
19 |
+
"num_classes": 2,
|
20 |
+
"names": [
|
21 |
+
"False",
|
22 |
+
"True",
|
23 |
+
],
|
24 |
+
"names_file": null,
|
25 |
+
"id": null,
|
26 |
+
"_type": "ClassLabel"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"post_processed": null,
|
30 |
+
"supervised_keys": null,
|
31 |
+
"builder_name": "kobest_v1.0",
|
32 |
+
"config_name": "boolq",
|
33 |
+
"version": {
|
34 |
+
"version_str": "1.0",
|
35 |
+
"description": "",
|
36 |
+
"major": 1,
|
37 |
+
"minor": 0,
|
38 |
+
"patch": 0
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"copa": {
|
42 |
+
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
43 |
+
"citation": " TBD\n",
|
44 |
+
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
45 |
+
"license": "",
|
46 |
+
"features": {
|
47 |
+
"premise": {
|
48 |
+
"dtype": "string",
|
49 |
+
"id": null,
|
50 |
+
"_type": "Value"
|
51 |
+
},
|
52 |
+
"question": {
|
53 |
+
"dtype": "string",
|
54 |
+
"id": null,
|
55 |
+
"_type": "Value"
|
56 |
+
},
|
57 |
+
"alternative_1": {
|
58 |
+
"dtype": "string",
|
59 |
+
"id": null,
|
60 |
+
"_type": "Value"
|
61 |
+
},
|
62 |
+
"alternative_2": {
|
63 |
+
"dtype": "string",
|
64 |
+
"id": null,
|
65 |
+
"_type": "Value"
|
66 |
+
},
|
67 |
+
"label": {
|
68 |
+
"num_classes": 2,
|
69 |
+
"names": [
|
70 |
+
"alternative_1",
|
71 |
+
"alternative_2"
|
72 |
+
],
|
73 |
+
"names_file": null,
|
74 |
+
"id": null,
|
75 |
+
"_type": "ClassLabel"
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"post_processed": null,
|
79 |
+
"supervised_keys": null,
|
80 |
+
"builder_name": "kobest_v1.0",
|
81 |
+
"config_name": "copa",
|
82 |
+
"version": {
|
83 |
+
"version_str": "1.0",
|
84 |
+
"description": "",
|
85 |
+
"major": 1,
|
86 |
+
"minor": 0,
|
87 |
+
"patch": 0
|
88 |
+
}
|
89 |
+
},
|
90 |
+
"wic": {
|
91 |
+
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
92 |
+
"citation": " TBD\n",
|
93 |
+
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
94 |
+
"license": "",
|
95 |
+
"features": {
|
96 |
+
"word": {
|
97 |
+
"dtype": "string",
|
98 |
+
"id": null,
|
99 |
+
"_type": "Value"
|
100 |
+
},
|
101 |
+
"context_1": {
|
102 |
+
"dtype": "string",
|
103 |
+
"id": null,
|
104 |
+
"_type": "Value"
|
105 |
+
},
|
106 |
+
"context_2": {
|
107 |
+
"dtype": "string",
|
108 |
+
"id": null,
|
109 |
+
"_type": "Value"
|
110 |
+
},
|
111 |
+
"label": {
|
112 |
+
"num_classes": 2,
|
113 |
+
"names": [
|
114 |
+
"False",
|
115 |
+
"True"
|
116 |
+
],
|
117 |
+
"names_file": null,
|
118 |
+
"id": null,
|
119 |
+
"_type": "ClassLabel"
|
120 |
+
}
|
121 |
+
},
|
122 |
+
"post_processed": null,
|
123 |
+
"supervised_keys": null,
|
124 |
+
"builder_name": "kobest_v1.0",
|
125 |
+
"config_name": "copa",
|
126 |
+
"version": {
|
127 |
+
"version_str": "1.0",
|
128 |
+
"description": "",
|
129 |
+
"major": 1,
|
130 |
+
"minor": 0,
|
131 |
+
"patch": 0
|
132 |
+
}
|
133 |
+
},
|
134 |
+
"hellaswag": {
|
135 |
+
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
136 |
+
"citation": " TBD\n",
|
137 |
+
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
138 |
+
"license": "",
|
139 |
+
"features": {
|
140 |
+
"context": {
|
141 |
+
"dtype": "string",
|
142 |
+
"id": null,
|
143 |
+
"_type": "Value"
|
144 |
+
},
|
145 |
+
"ending_1": {
|
146 |
+
"dtype": "string",
|
147 |
+
"id": null,
|
148 |
+
"_type": "Value"
|
149 |
+
},
|
150 |
+
"ending_2": {
|
151 |
+
"dtype": "string",
|
152 |
+
"id": null,
|
153 |
+
"_type": "Value"
|
154 |
+
},
|
155 |
+
"ending_3": {
|
156 |
+
"dtype": "string",
|
157 |
+
"id": null,
|
158 |
+
"_type": "Value"
|
159 |
+
},
|
160 |
+
"ending_4": {
|
161 |
+
"dtype": "string",
|
162 |
+
"id": null,
|
163 |
+
"_type": "Value"
|
164 |
+
},
|
165 |
+
"label": {
|
166 |
+
"num_classes": 4,
|
167 |
+
"names": [
|
168 |
+
"ending_1",
|
169 |
+
"ending_1",
|
170 |
+
"ending_3",
|
171 |
+
"ending_4"
|
172 |
+
],
|
173 |
+
"names_file": null,
|
174 |
+
"id": null,
|
175 |
+
"_type": "ClassLabel"
|
176 |
+
}
|
177 |
+
},
|
178 |
+
"post_processed": null,
|
179 |
+
"supervised_keys": null,
|
180 |
+
"builder_name": "kobest_v1.0",
|
181 |
+
"config_name": "copa",
|
182 |
+
"version": {
|
183 |
+
"version_str": "1.0",
|
184 |
+
"description": "",
|
185 |
+
"major": 1,
|
186 |
+
"minor": 0,
|
187 |
+
"patch": 0
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"sentineg": {
|
191 |
+
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
192 |
+
"citation": " TBD\n",
|
193 |
+
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
194 |
+
"license": "",
|
195 |
+
"features": {
|
196 |
+
"sentence": {
|
197 |
+
"dtype": "string",
|
198 |
+
"id": null,
|
199 |
+
"_type": "Value"
|
200 |
+
},
|
201 |
+
"label": {
|
202 |
+
"num_classes": 2,
|
203 |
+
"names": [
|
204 |
+
"negative",
|
205 |
+
"positive"
|
206 |
+
],
|
207 |
+
"names_file": null,
|
208 |
+
"id": null,
|
209 |
+
"_type": "ClassLabel"
|
210 |
+
}
|
211 |
+
},
|
212 |
+
"post_processed": null,
|
213 |
+
"supervised_keys": null,
|
214 |
+
"builder_name": "kobest_v1.0",
|
215 |
+
"config_name": "copa",
|
216 |
+
"version": {
|
217 |
+
"version_str": "1.0",
|
218 |
+
"description": "",
|
219 |
+
"major": 1,
|
220 |
+
"minor": 0,
|
221 |
+
"patch": 0
|
222 |
+
}
|
223 |
+
}
|
224 |
+
}
|
kobest_v1.0.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Korean Balanced Evaluation of Significant Tasks"""
|
2 |
+
|
3 |
+
|
4 |
+
import csv
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
|
11 |
+
_CITATAION = """\
|
12 |
+
TBD
|
13 |
+
"""
|
14 |
+
|
15 |
+
_DESCRIPTION = """\
|
16 |
+
The dataset contains data for KoBEST dataset
|
17 |
+
"""
|
18 |
+
|
19 |
+
_URL = "https://github.com/SKT-LSL/KoBEST_datarepo"
|
20 |
+
|
21 |
+
_DATA_URLS = {
|
22 |
+
"boolq": {
|
23 |
+
"train": _URL + "/v1.0/BoolQ/train.tsv",
|
24 |
+
"dev": _URL + "/v1.0/BoolQ/dev.tsv",
|
25 |
+
"test": _URL + "/v1.0/BoolQ/test.tsv",
|
26 |
+
},
|
27 |
+
"copa": {
|
28 |
+
"train": _URL + "/v1.0/COPA/train.tsv",
|
29 |
+
"dev": _URL + "/v1.0/COPA/dev.tsv",
|
30 |
+
"test": _URL + "/v1.0/COPA/test.tsv",
|
31 |
+
},
|
32 |
+
"sentineg": {
|
33 |
+
"train": _URL + "/v1.0/SentiNeg/train.tsv",
|
34 |
+
"dev": _URL + "/v1.0/SentiNeg/dev.tsv",
|
35 |
+
"test": _URL + "/v1.0/SentiNeg/test.tsv",
|
36 |
+
},
|
37 |
+
"hellaswag": {
|
38 |
+
"train": _URL + "/v1.0/HellaSwag/train.tsv",
|
39 |
+
"dev": _URL + "/v1.0/HellaSwag/dev.tsv",
|
40 |
+
"test": _URL + "/v1.0/HellaSwag/test.tsv",
|
41 |
+
},
|
42 |
+
"wic": {
|
43 |
+
"train": _URL + "/v1.0/WiC/train.tsv",
|
44 |
+
"dev": _URL + "/v1.0/WiC/dev.tsv",
|
45 |
+
"test": _URL + "/v1.0/WiC/test.tsv",
|
46 |
+
},
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
class KoBESTConfig(datasets.BuilderConfig):
|
51 |
+
"""Config for building KoBEST"""
|
52 |
+
|
53 |
+
def __init__(self, description, data_url, citation, url, **kwargs):
|
54 |
+
"""
|
55 |
+
Args:
|
56 |
+
description: `string`, brief description of the dataset
|
57 |
+
data_url: `dictionary`, dict with url for each split of data.
|
58 |
+
citation: `string`, citation for the dataset.
|
59 |
+
url: `string`, url for information about the dataset.
|
60 |
+
**kwrags: keyword arguments frowarded to super
|
61 |
+
"""
|
62 |
+
super(KoBESTConfig, self).__init__(version=datasets.Version("1.0", ""), **kwargs)
|
63 |
+
self.description = description
|
64 |
+
self.data_url = data_url
|
65 |
+
self.citation = citation
|
66 |
+
self.url = url
|
67 |
+
|
68 |
+
|
69 |
+
class KoBEST(datasets.GeneratorBasedBuilder):
|
70 |
+
BUILDER_CONFIGS = [
|
71 |
+
KoBESTConfig(name=name, description=_DESCRIPTION, data_url=_DATA_URLS[name], citation=_CITATAION, url=_URL)
|
72 |
+
for name in ["boolq", "copa", 'sentineg', 'hellaswag', 'wic']
|
73 |
+
]
|
74 |
+
BUILDER_CONFIG_CLASS = KoBESTConfig
|
75 |
+
|
76 |
+
def _info(self):
|
77 |
+
features = {}
|
78 |
+
if self.config.name == "boolq":
|
79 |
+
labels = ["True", "False"]
|
80 |
+
features["paragraph"] = datasets.Value("string")
|
81 |
+
features["question"] = datasets.Value("string")
|
82 |
+
features["label"] = datasets.features.ClassLabel(names=labels)
|
83 |
+
|
84 |
+
if self.config.name == "copa":
|
85 |
+
labels = ["alternative_1", "alternative_2"]
|
86 |
+
features["premise"] = datasets.Value("string")
|
87 |
+
features["question"] = datasets.Value("string")
|
88 |
+
features["alternative_1"] = datasets.Value("string")
|
89 |
+
features["alternative_2"] = datasets.Value("string")
|
90 |
+
features["label"] = datasets.features.ClassLabel(names=labels)
|
91 |
+
|
92 |
+
if self.config.name == "wic":
|
93 |
+
labels = ["True", "False"]
|
94 |
+
features["word"] = datasets.Value("string")
|
95 |
+
features["context_1"] = datasets.Value("string")
|
96 |
+
features["context_2"] = datasets.Value("string")
|
97 |
+
features["label"] = datasets.features.ClassLabel(names=labels)
|
98 |
+
|
99 |
+
if self.config.name == "hellaswag":
|
100 |
+
labels = ["ending_1", "ending_2", "ending_3", "ending_4"]
|
101 |
+
|
102 |
+
features["context"] = datasets.Value("string")
|
103 |
+
features["ending_1"] = datasets.Value("string")
|
104 |
+
features["ending_2"] = datasets.Value("string")
|
105 |
+
features["ending_3"] = datasets.Value("string")
|
106 |
+
features["ending_4"] = datasets.Value("string")
|
107 |
+
features["label"] = datasets.features.ClassLabel(names=labels)
|
108 |
+
|
109 |
+
if self.config.name == "sentineg":
|
110 |
+
labels = ["negative", "positive"]
|
111 |
+
features["sentence"] = datasets.Value("string")
|
112 |
+
features["label"] = datasets.features.ClassLabel(names=labels)
|
113 |
+
|
114 |
+
return datasets.DatasetInfo(
|
115 |
+
description=_DESCRIPTION, features=datasets.Features(features), homepage=_URL, citation=_CITATAION
|
116 |
+
)
|
117 |
+
|
118 |
+
def _split_generators(self, dl_manager):
|
119 |
+
|
120 |
+
train = dl_manager.download_and_extract(self.config.data_url["train"])
|
121 |
+
dev = dl_manager.download_and_extract(self.config.data_url["dev"])
|
122 |
+
test = dl_manager.download_and_extract(self.config.data_url["test"])
|
123 |
+
|
124 |
+
return [
|
125 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train, "split": "train"}),
|
126 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dev, "split": "dev"}),
|
127 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
|
128 |
+
]
|
129 |
+
|
130 |
+
# if self.config.name == "boolq":
|
131 |
+
# train = dl_manager.download_and_extract(self.config.data_url["train"])
|
132 |
+
# dev = dl_manager.download_and_extract(self.config.data_url["dev"])
|
133 |
+
# test = dl_manager.download_and_extract(self.config.data_url["test"])
|
134 |
+
#
|
135 |
+
# return [
|
136 |
+
# datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train, "split": "train"}),
|
137 |
+
# datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dev, "split": "dev"}),
|
138 |
+
# datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
|
139 |
+
# ]
|
140 |
+
#
|
141 |
+
|
142 |
+
def _generate_examples(self, filepath, split):
|
143 |
+
if self.config.name == "boolq":
|
144 |
+
df = pd.read_csv(filepath, sep="\t")
|
145 |
+
df = df.dropna()
|
146 |
+
|
147 |
+
for id_, row in df.iterrows():
|
148 |
+
yield id_, {
|
149 |
+
"paragraph": str(row["Text"]),
|
150 |
+
"question": str(row["Question"]),
|
151 |
+
"label": str(int(row["Answer"])),
|
152 |
+
}
|
153 |
+
|
154 |
+
if self.config.name == "copa":
|
155 |
+
df = pd.read_csv(filepath, sep="\t")
|
156 |
+
df = df.dropna()
|
157 |
+
|
158 |
+
for id_, row in df.iterrows():
|
159 |
+
yield id_, {
|
160 |
+
"premise": str(row["sentence"]),
|
161 |
+
"question": str(row["question"]),
|
162 |
+
"alternative_1": str(int(row["1"])),
|
163 |
+
"alternative_2": str(int(row["2"])),
|
164 |
+
"label": str(row["Answer"]-1),
|
165 |
+
}
|
166 |
+
|
167 |
+
if self.config.name == "wic":
|
168 |
+
df = pd.read_csv(filepath, sep="\t")
|
169 |
+
df = df.dropna()
|
170 |
+
|
171 |
+
for id_, row in df.iterrows():
|
172 |
+
yield id_, {
|
173 |
+
"word": str(row["Target"]),
|
174 |
+
"context_1": str(row["SENTENCE1"]),
|
175 |
+
"context_2": str(int(row["SENTENCE2"])),
|
176 |
+
"label": str(int(row["Answer"])),
|
177 |
+
}
|
178 |
+
|
179 |
+
if self.config.name == "hellaswag":
|
180 |
+
df = pd.read_csv(filepath, sep="\t")
|
181 |
+
df = df.dropna()
|
182 |
+
|
183 |
+
for id_, row in df.iterrows():
|
184 |
+
yield id_, {
|
185 |
+
"context": str(row["context"]),
|
186 |
+
"ending_1": str(row["choice1"]),
|
187 |
+
"ending_2": str(int(row["choice2"])),
|
188 |
+
"ending_3": str(int(row["choice3"])),
|
189 |
+
"ending_4": str(int(row["choice4"])),
|
190 |
+
"label": str(row["label"]),
|
191 |
+
}
|
192 |
+
|
193 |
+
if self.config.name == "sentineg":
|
194 |
+
df = pd.read_csv(filepath, sep="\t")
|
195 |
+
df = df.dropna()
|
196 |
+
|
197 |
+
for id_, row in df.iterrows():
|
198 |
+
yield id_, {
|
199 |
+
"sentence": str(row["Text"]),
|
200 |
+
"label": str(int(row["Label"])),
|
201 |
+
}
|
202 |
+
|