Datasets:
remove python scripts (#7)
Browse files- remove python scripts (603f5135e70b8b94e73a66ee66975979177acb8b)
- dataset_infos.json +0 -224
- kobest_v1.py +0 -242
dataset_infos.json
DELETED
@@ -1,224 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"boolq": {
|
3 |
-
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
4 |
-
"citation": " TBD\n",
|
5 |
-
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
6 |
-
"license": "",
|
7 |
-
"features": {
|
8 |
-
"paragraph": {
|
9 |
-
"dtype": "string",
|
10 |
-
"id": null,
|
11 |
-
"_type": "Value"
|
12 |
-
},
|
13 |
-
"question": {
|
14 |
-
"dtype": "string",
|
15 |
-
"id": null,
|
16 |
-
"_type": "Value"
|
17 |
-
},
|
18 |
-
"label": {
|
19 |
-
"num_classes": 2,
|
20 |
-
"names": [
|
21 |
-
"False",
|
22 |
-
"True"
|
23 |
-
],
|
24 |
-
"names_file": null,
|
25 |
-
"id": null,
|
26 |
-
"_type": "ClassLabel"
|
27 |
-
}
|
28 |
-
},
|
29 |
-
"post_processed": null,
|
30 |
-
"supervised_keys": null,
|
31 |
-
"builder_name": "kobest_v1",
|
32 |
-
"config_name": "boolq",
|
33 |
-
"version": {
|
34 |
-
"version_str": "1.0.0",
|
35 |
-
"description": "",
|
36 |
-
"major": 1,
|
37 |
-
"minor": 0,
|
38 |
-
"patch": 0
|
39 |
-
}
|
40 |
-
},
|
41 |
-
"copa": {
|
42 |
-
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
43 |
-
"citation": " TBD\n",
|
44 |
-
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
45 |
-
"license": "",
|
46 |
-
"features": {
|
47 |
-
"premise": {
|
48 |
-
"dtype": "string",
|
49 |
-
"id": null,
|
50 |
-
"_type": "Value"
|
51 |
-
},
|
52 |
-
"question": {
|
53 |
-
"dtype": "string",
|
54 |
-
"id": null,
|
55 |
-
"_type": "Value"
|
56 |
-
},
|
57 |
-
"alternative_1": {
|
58 |
-
"dtype": "string",
|
59 |
-
"id": null,
|
60 |
-
"_type": "Value"
|
61 |
-
},
|
62 |
-
"alternative_2": {
|
63 |
-
"dtype": "string",
|
64 |
-
"id": null,
|
65 |
-
"_type": "Value"
|
66 |
-
},
|
67 |
-
"label": {
|
68 |
-
"num_classes": 2,
|
69 |
-
"names": [
|
70 |
-
"alternative_1",
|
71 |
-
"alternative_2"
|
72 |
-
],
|
73 |
-
"names_file": null,
|
74 |
-
"id": null,
|
75 |
-
"_type": "ClassLabel"
|
76 |
-
}
|
77 |
-
},
|
78 |
-
"post_processed": null,
|
79 |
-
"supervised_keys": null,
|
80 |
-
"builder_name": "kobest_v1",
|
81 |
-
"config_name": "copa",
|
82 |
-
"version": {
|
83 |
-
"version_str": "1.0.0",
|
84 |
-
"description": "",
|
85 |
-
"major": 1,
|
86 |
-
"minor": 0,
|
87 |
-
"patch": 0
|
88 |
-
}
|
89 |
-
},
|
90 |
-
"wic": {
|
91 |
-
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
92 |
-
"citation": " TBD\n",
|
93 |
-
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
94 |
-
"license": "",
|
95 |
-
"features": {
|
96 |
-
"word": {
|
97 |
-
"dtype": "string",
|
98 |
-
"id": null,
|
99 |
-
"_type": "Value"
|
100 |
-
},
|
101 |
-
"context_1": {
|
102 |
-
"dtype": "string",
|
103 |
-
"id": null,
|
104 |
-
"_type": "Value"
|
105 |
-
},
|
106 |
-
"context_2": {
|
107 |
-
"dtype": "string",
|
108 |
-
"id": null,
|
109 |
-
"_type": "Value"
|
110 |
-
},
|
111 |
-
"label": {
|
112 |
-
"num_classes": 2,
|
113 |
-
"names": [
|
114 |
-
"False",
|
115 |
-
"True"
|
116 |
-
],
|
117 |
-
"names_file": null,
|
118 |
-
"id": null,
|
119 |
-
"_type": "ClassLabel"
|
120 |
-
}
|
121 |
-
},
|
122 |
-
"post_processed": null,
|
123 |
-
"supervised_keys": null,
|
124 |
-
"builder_name": "kobest_v1",
|
125 |
-
"config_name": "copa",
|
126 |
-
"version": {
|
127 |
-
"version_str": "1.0.0",
|
128 |
-
"description": "",
|
129 |
-
"major": 1,
|
130 |
-
"minor": 0,
|
131 |
-
"patch": 0
|
132 |
-
}
|
133 |
-
},
|
134 |
-
"hellaswag": {
|
135 |
-
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
136 |
-
"citation": " TBD\n",
|
137 |
-
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
138 |
-
"license": "",
|
139 |
-
"features": {
|
140 |
-
"context": {
|
141 |
-
"dtype": "string",
|
142 |
-
"id": null,
|
143 |
-
"_type": "Value"
|
144 |
-
},
|
145 |
-
"ending_1": {
|
146 |
-
"dtype": "string",
|
147 |
-
"id": null,
|
148 |
-
"_type": "Value"
|
149 |
-
},
|
150 |
-
"ending_2": {
|
151 |
-
"dtype": "string",
|
152 |
-
"id": null,
|
153 |
-
"_type": "Value"
|
154 |
-
},
|
155 |
-
"ending_3": {
|
156 |
-
"dtype": "string",
|
157 |
-
"id": null,
|
158 |
-
"_type": "Value"
|
159 |
-
},
|
160 |
-
"ending_4": {
|
161 |
-
"dtype": "string",
|
162 |
-
"id": null,
|
163 |
-
"_type": "Value"
|
164 |
-
},
|
165 |
-
"label": {
|
166 |
-
"num_classes": 4,
|
167 |
-
"names": [
|
168 |
-
"ending_1",
|
169 |
-
"ending_2",
|
170 |
-
"ending_3",
|
171 |
-
"ending_4"
|
172 |
-
],
|
173 |
-
"names_file": null,
|
174 |
-
"id": null,
|
175 |
-
"_type": "ClassLabel"
|
176 |
-
}
|
177 |
-
},
|
178 |
-
"post_processed": null,
|
179 |
-
"supervised_keys": null,
|
180 |
-
"builder_name": "kobest_v1",
|
181 |
-
"config_name": "copa",
|
182 |
-
"version": {
|
183 |
-
"version_str": "1.0.0",
|
184 |
-
"description": "",
|
185 |
-
"major": 1,
|
186 |
-
"minor": 0,
|
187 |
-
"patch": 0
|
188 |
-
}
|
189 |
-
},
|
190 |
-
"sentineg": {
|
191 |
-
"description": " Korean Balanced Evaluation of Significant Tasks Benchmark\n",
|
192 |
-
"citation": " TBD\n",
|
193 |
-
"homepage": "https://github.com/SKT-LSL/KoBEST_datarepo",
|
194 |
-
"license": "",
|
195 |
-
"features": {
|
196 |
-
"sentence": {
|
197 |
-
"dtype": "string",
|
198 |
-
"id": null,
|
199 |
-
"_type": "Value"
|
200 |
-
},
|
201 |
-
"label": {
|
202 |
-
"num_classes": 2,
|
203 |
-
"names": [
|
204 |
-
"negative",
|
205 |
-
"positive"
|
206 |
-
],
|
207 |
-
"names_file": null,
|
208 |
-
"id": null,
|
209 |
-
"_type": "ClassLabel"
|
210 |
-
}
|
211 |
-
},
|
212 |
-
"post_processed": null,
|
213 |
-
"supervised_keys": null,
|
214 |
-
"builder_name": "kobest_v1",
|
215 |
-
"config_name": "copa",
|
216 |
-
"version": {
|
217 |
-
"version_str": "1.0.0",
|
218 |
-
"description": "",
|
219 |
-
"major": 1,
|
220 |
-
"minor": 0,
|
221 |
-
"patch": 0
|
222 |
-
}
|
223 |
-
}
|
224 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kobest_v1.py
DELETED
@@ -1,242 +0,0 @@
|
|
1 |
-
"""Korean Balanced Evaluation of Significant Tasks"""
|
2 |
-
|
3 |
-
|
4 |
-
import csv
|
5 |
-
import os
|
6 |
-
import pandas as pd
|
7 |
-
|
8 |
-
import datasets
|
9 |
-
|
10 |
-
|
11 |
-
_CITATAION = """\
|
12 |
-
@misc{https://doi.org/10.48550/arxiv.2204.04541,
|
13 |
-
doi = {10.48550/ARXIV.2204.04541},
|
14 |
-
url = {https://arxiv.org/abs/2204.04541},
|
15 |
-
author = {Kim, Dohyeong and Jang, Myeongjun and Kwon, Deuk Sin and Davis, Eric},
|
16 |
-
title = {KOBEST: Korean Balanced Evaluation of Significant Tasks},
|
17 |
-
publisher = {arXiv},
|
18 |
-
year = {2022},
|
19 |
-
}
|
20 |
-
"""
|
21 |
-
|
22 |
-
_DESCRIPTION = """\
|
23 |
-
The dataset contains data for KoBEST dataset
|
24 |
-
"""
|
25 |
-
|
26 |
-
_URL = "https://github.com/SKT-LSL/KoBEST_datarepo/raw/main"
|
27 |
-
|
28 |
-
|
29 |
-
_DATA_URLS = {
|
30 |
-
"boolq": {
|
31 |
-
"train": _URL + "/v1.0/BoolQ/train.tsv",
|
32 |
-
"dev": _URL + "/v1.0/BoolQ/dev.tsv",
|
33 |
-
"test": _URL + "/v1.0/BoolQ/test.tsv",
|
34 |
-
},
|
35 |
-
"copa": {
|
36 |
-
"train": _URL + "/v1.0/COPA/train.tsv",
|
37 |
-
"dev": _URL + "/v1.0/COPA/dev.tsv",
|
38 |
-
"test": _URL + "/v1.0/COPA/test.tsv",
|
39 |
-
},
|
40 |
-
"sentineg": {
|
41 |
-
"train": _URL + "/v1.0/SentiNeg/train.tsv",
|
42 |
-
"dev": _URL + "/v1.0/SentiNeg/dev.tsv",
|
43 |
-
"test": _URL + "/v1.0/SentiNeg/test.tsv",
|
44 |
-
"test_originated": _URL + "/v1.0/SentiNeg/test.tsv",
|
45 |
-
},
|
46 |
-
"hellaswag": {
|
47 |
-
"train": _URL + "/v1.0/HellaSwag/train.tsv",
|
48 |
-
"dev": _URL + "/v1.0/HellaSwag/dev.tsv",
|
49 |
-
"test": _URL + "/v1.0/HellaSwag/test.tsv",
|
50 |
-
},
|
51 |
-
"wic": {
|
52 |
-
"train": _URL + "/v1.0/WiC/train.tsv",
|
53 |
-
"dev": _URL + "/v1.0/WiC/dev.tsv",
|
54 |
-
"test": _URL + "/v1.0/WiC/test.tsv",
|
55 |
-
},
|
56 |
-
}
|
57 |
-
|
58 |
-
_LICENSE = "CC-BY-SA-4.0"
|
59 |
-
|
60 |
-
|
61 |
-
class KoBESTConfig(datasets.BuilderConfig):
|
62 |
-
"""Config for building KoBEST"""
|
63 |
-
|
64 |
-
def __init__(self, description, data_url, citation, url, **kwargs):
|
65 |
-
"""
|
66 |
-
Args:
|
67 |
-
description: `string`, brief description of the dataset
|
68 |
-
data_url: `dictionary`, dict with url for each split of data.
|
69 |
-
citation: `string`, citation for the dataset.
|
70 |
-
url: `string`, url for information about the dataset.
|
71 |
-
**kwrags: keyword arguments frowarded to super
|
72 |
-
"""
|
73 |
-
super(KoBESTConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
74 |
-
self.description = description
|
75 |
-
self.data_url = data_url
|
76 |
-
self.citation = citation
|
77 |
-
self.url = url
|
78 |
-
|
79 |
-
|
80 |
-
class KoBEST(datasets.GeneratorBasedBuilder):
|
81 |
-
BUILDER_CONFIGS = [
|
82 |
-
KoBESTConfig(name=name, description=_DESCRIPTION, data_url=_DATA_URLS[name], citation=_CITATAION, url=_URL)
|
83 |
-
for name in ["boolq", "copa", 'sentineg', 'hellaswag', 'wic']
|
84 |
-
]
|
85 |
-
BUILDER_CONFIG_CLASS = KoBESTConfig
|
86 |
-
|
87 |
-
def _info(self):
|
88 |
-
features = {}
|
89 |
-
if self.config.name == "boolq":
|
90 |
-
labels = ["False", "True"]
|
91 |
-
features["paragraph"] = datasets.Value("string")
|
92 |
-
features["question"] = datasets.Value("string")
|
93 |
-
features["label"] = datasets.features.ClassLabel(names=labels)
|
94 |
-
|
95 |
-
if self.config.name == "copa":
|
96 |
-
labels = ["alternative_1", "alternative_2"]
|
97 |
-
features["premise"] = datasets.Value("string")
|
98 |
-
features["question"] = datasets.Value("string")
|
99 |
-
features["alternative_1"] = datasets.Value("string")
|
100 |
-
features["alternative_2"] = datasets.Value("string")
|
101 |
-
features["label"] = datasets.features.ClassLabel(names=labels)
|
102 |
-
|
103 |
-
if self.config.name == "wic":
|
104 |
-
labels = ["False", "True"]
|
105 |
-
features["word"] = datasets.Value("string")
|
106 |
-
features["context_1"] = datasets.Value("string")
|
107 |
-
features["context_2"] = datasets.Value("string")
|
108 |
-
features["label"] = datasets.features.ClassLabel(names=labels)
|
109 |
-
|
110 |
-
if self.config.name == "hellaswag":
|
111 |
-
labels = ["ending_1", "ending_2", "ending_3", "ending_4"]
|
112 |
-
|
113 |
-
features["context"] = datasets.Value("string")
|
114 |
-
features["ending_1"] = datasets.Value("string")
|
115 |
-
features["ending_2"] = datasets.Value("string")
|
116 |
-
features["ending_3"] = datasets.Value("string")
|
117 |
-
features["ending_4"] = datasets.Value("string")
|
118 |
-
features["label"] = datasets.features.ClassLabel(names=labels)
|
119 |
-
|
120 |
-
if self.config.name == "sentineg":
|
121 |
-
labels = ["negative", "positive"]
|
122 |
-
features["sentence"] = datasets.Value("string")
|
123 |
-
features["label"] = datasets.features.ClassLabel(names=labels)
|
124 |
-
|
125 |
-
return datasets.DatasetInfo(
|
126 |
-
description=_DESCRIPTION, features=datasets.Features(features), homepage=_URL, citation=_CITATAION
|
127 |
-
)
|
128 |
-
|
129 |
-
def _split_generators(self, dl_manager):
|
130 |
-
|
131 |
-
train = dl_manager.download_and_extract(self.config.data_url["train"])
|
132 |
-
dev = dl_manager.download_and_extract(self.config.data_url["dev"])
|
133 |
-
test = dl_manager.download_and_extract(self.config.data_url["test"])
|
134 |
-
|
135 |
-
if self.config.data_url.get("test_originated"):
|
136 |
-
test_originated = dl_manager.download_and_extract(self.config.data_url["test_originated"])
|
137 |
-
|
138 |
-
return [
|
139 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train, "split": "train"}),
|
140 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dev, "split": "dev"}),
|
141 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
|
142 |
-
datasets.SplitGenerator(name="test_originated", gen_kwargs={"filepath": test_originated, "split": "test_originated"}),
|
143 |
-
]
|
144 |
-
|
145 |
-
return [
|
146 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train, "split": "train"}),
|
147 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dev, "split": "dev"}),
|
148 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
|
149 |
-
]
|
150 |
-
|
151 |
-
def _generate_examples(self, filepath, split):
|
152 |
-
if self.config.name == "boolq":
|
153 |
-
df = pd.read_csv(filepath, sep="\t")
|
154 |
-
df = df.dropna()
|
155 |
-
df = df[['Text', 'Question', 'Answer']]
|
156 |
-
|
157 |
-
df = df.rename(columns={
|
158 |
-
'Text': 'paragraph',
|
159 |
-
'Question': 'question',
|
160 |
-
'Answer': 'label',
|
161 |
-
})
|
162 |
-
df['label'] = [0 if str(s) == 'False' else 1 for s in df['label'].tolist()]
|
163 |
-
|
164 |
-
elif self.config.name == "copa":
|
165 |
-
df = pd.read_csv(filepath, sep="\t")
|
166 |
-
df = df.dropna()
|
167 |
-
df = df[['sentence', 'question', '1', '2', 'Answer']]
|
168 |
-
|
169 |
-
df = df.rename(columns={
|
170 |
-
'sentence': 'premise',
|
171 |
-
'question': 'question',
|
172 |
-
'1': 'alternative_1',
|
173 |
-
'2': 'alternative_2',
|
174 |
-
'Answer': 'label',
|
175 |
-
})
|
176 |
-
df['label'] = [i-1 for i in df['label'].tolist()]
|
177 |
-
|
178 |
-
elif self.config.name == "wic":
|
179 |
-
df = pd.read_csv(filepath, sep="\t")
|
180 |
-
df = df.dropna()
|
181 |
-
df = df[['Target', 'SENTENCE1', 'SENTENCE2', 'ANSWER']]
|
182 |
-
|
183 |
-
df = df.rename(columns={
|
184 |
-
'Target': 'word',
|
185 |
-
'SENTENCE1': 'context_1',
|
186 |
-
'SENTENCE2': 'context_2',
|
187 |
-
'ANSWER': 'label',
|
188 |
-
})
|
189 |
-
df['label'] = [0 if str(s) == 'False' else 1 for s in df['label'].tolist()]
|
190 |
-
|
191 |
-
elif self.config.name == "hellaswag":
|
192 |
-
df = pd.read_csv(filepath, sep="\t")
|
193 |
-
df = df.dropna()
|
194 |
-
df = df[['context', 'choice1', 'choice2', 'choice3', 'choice4', 'label']]
|
195 |
-
|
196 |
-
df = df.rename(columns={
|
197 |
-
'context': 'context',
|
198 |
-
'choice1': 'ending_1',
|
199 |
-
'choice2': 'ending_2',
|
200 |
-
'choice3': 'ending_3',
|
201 |
-
'choice4': 'ending_4',
|
202 |
-
'label': 'label',
|
203 |
-
})
|
204 |
-
|
205 |
-
elif self.config.name == "sentineg":
|
206 |
-
df = pd.read_csv(filepath, sep="\t")
|
207 |
-
df = df.dropna()
|
208 |
-
|
209 |
-
if split == "test_originated":
|
210 |
-
df = df[['Text_origin', 'Label_origin']]
|
211 |
-
|
212 |
-
df = df.rename(columns={
|
213 |
-
'Text_origin': 'sentence',
|
214 |
-
'Label_origin': 'label',
|
215 |
-
})
|
216 |
-
else:
|
217 |
-
df = df[['Text', 'Label']]
|
218 |
-
|
219 |
-
df = df.rename(columns={
|
220 |
-
'Text': 'sentence',
|
221 |
-
'Label': 'label',
|
222 |
-
})
|
223 |
-
|
224 |
-
else:
|
225 |
-
raise NotImplementedError
|
226 |
-
|
227 |
-
for id_, row in df.iterrows():
|
228 |
-
features = {key: row[key] for key in row.keys()}
|
229 |
-
yield id_, features
|
230 |
-
|
231 |
-
|
232 |
-
if __name__ == "__main__":
|
233 |
-
for config_name in ["boolq", "copa", 'sentineg', 'hellaswag', 'wic']:
|
234 |
-
dataset = datasets.load_dataset("kobest_v1.py", config_name, ignore_verifications=True)
|
235 |
-
os.makedirs(config_name, exist_ok=True)
|
236 |
-
for split, split_dataset in dataset.items():
|
237 |
-
split_dataset.to_json(f"{config_name}/{split}.jsonl")
|
238 |
-
# for task in ['boolq', 'copa', 'wic', 'hellaswag', 'sentineg']:
|
239 |
-
# dataset = datasets.load_dataset("kobest_v1.py", task, ignore_verifications=True)
|
240 |
-
# print(dataset)
|
241 |
-
# print(dataset['train']['label'])
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|