Datasets:
skt
/

Modalities:
Text
Formats:
json
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
korca commited on
Commit
810f0e4
1 Parent(s): fb6afc0

update kobest v1 data loader

Browse files
Files changed (2) hide show
  1. dataset_infos.json +1 -1
  2. kobest_v1.py +102 -58
dataset_infos.json CHANGED
@@ -166,7 +166,7 @@
166
  "num_classes": 4,
167
  "names": [
168
  "ending_1",
169
- "ending_1",
170
  "ending_3",
171
  "ending_4"
172
  ],
 
166
  "num_classes": 4,
167
  "names": [
168
  "ending_1",
169
+ "ending_2",
170
  "ending_3",
171
  "ending_4"
172
  ],
kobest_v1.py CHANGED
@@ -16,7 +16,8 @@ _DESCRIPTION = """\
16
  The dataset contains data for KoBEST dataset
17
  """
18
 
19
- _URL = "https://github.com/SKT-LSL/KoBEST_datarepo"
 
20
 
21
  _DATA_URLS = {
22
  "boolq": {
@@ -46,6 +47,8 @@ _DATA_URLS = {
46
  },
47
  }
48
 
 
 
49
 
50
  class KoBESTConfig(datasets.BuilderConfig):
51
  """Config for building KoBEST"""
@@ -66,6 +69,26 @@ class KoBESTConfig(datasets.BuilderConfig):
66
  self.url = url
67
 
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  class KoBEST(datasets.GeneratorBasedBuilder):
70
  BUILDER_CONFIGS = [
71
  KoBESTConfig(name=name, description=_DESCRIPTION, data_url=_DATA_URLS[name], citation=_CITATAION, url=_URL)
@@ -76,7 +99,7 @@ class KoBEST(datasets.GeneratorBasedBuilder):
76
  def _info(self):
77
  features = {}
78
  if self.config.name == "boolq":
79
- labels = ["True", "False"]
80
  features["paragraph"] = datasets.Value("string")
81
  features["question"] = datasets.Value("string")
82
  features["label"] = datasets.features.ClassLabel(names=labels)
@@ -90,7 +113,7 @@ class KoBEST(datasets.GeneratorBasedBuilder):
90
  features["label"] = datasets.features.ClassLabel(names=labels)
91
 
92
  if self.config.name == "wic":
93
- labels = ["True", "False"]
94
  features["word"] = datasets.Value("string")
95
  features["context_1"] = datasets.Value("string")
96
  features["context_2"] = datasets.Value("string")
@@ -127,76 +150,97 @@ class KoBEST(datasets.GeneratorBasedBuilder):
127
  datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
128
  ]
129
 
130
- # if self.config.name == "boolq":
131
- # train = dl_manager.download_and_extract(self.config.data_url["train"])
132
- # dev = dl_manager.download_and_extract(self.config.data_url["dev"])
133
- # test = dl_manager.download_and_extract(self.config.data_url["test"])
134
- #
135
- # return [
136
- # datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train, "split": "train"}),
137
- # datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dev, "split": "dev"}),
138
- # datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
139
- # ]
140
- #
141
-
142
  def _generate_examples(self, filepath, split):
143
  if self.config.name == "boolq":
144
  df = pd.read_csv(filepath, sep="\t")
145
  df = df.dropna()
 
146
 
147
- for id_, row in df.iterrows():
148
- yield id_, {
149
- "paragraph": str(row["Text"]),
150
- "question": str(row["Question"]),
151
- "label": str(int(row["Answer"])),
152
- }
153
 
154
- if self.config.name == "copa":
155
  df = pd.read_csv(filepath, sep="\t")
156
  df = df.dropna()
157
-
158
- for id_, row in df.iterrows():
159
- yield id_, {
160
- "premise": str(row["sentence"]),
161
- "question": str(row["question"]),
162
- "alternative_1": str(int(row["1"])),
163
- "alternative_2": str(int(row["2"])),
164
- "label": str(row["Answer"]-1),
165
- }
166
-
167
- if self.config.name == "wic":
 
168
  df = pd.read_csv(filepath, sep="\t")
169
  df = df.dropna()
 
170
 
171
- for id_, row in df.iterrows():
172
- yield id_, {
173
- "word": str(row["Target"]),
174
- "context_1": str(row["SENTENCE1"]),
175
- "context_2": str(int(row["SENTENCE2"])),
176
- "label": str(int(row["Answer"])),
177
- }
178
 
179
- if self.config.name == "hellaswag":
180
  df = pd.read_csv(filepath, sep="\t")
181
  df = df.dropna()
182
-
183
- for id_, row in df.iterrows():
184
- yield id_, {
185
- "context": str(row["context"]),
186
- "ending_1": str(row["choice1"]),
187
- "ending_2": str(int(row["choice2"])),
188
- "ending_3": str(int(row["choice3"])),
189
- "ending_4": str(int(row["choice4"])),
190
- "label": str(row["label"]),
191
- }
192
-
193
- if self.config.name == "sentineg":
 
 
 
 
 
 
 
 
 
 
194
  df = pd.read_csv(filepath, sep="\t")
195
  df = df.dropna()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
- for id_, row in df.iterrows():
198
- yield id_, {
199
- "sentence": str(row["Text"]),
200
- "label": str(int(row["Label"])),
201
- }
202
 
 
16
  The dataset contains data for KoBEST dataset
17
  """
18
 
19
+ _URL = "https://github.com/SKT-LSL/KoBEST_datarepo/raw/main"
20
+
21
 
22
  _DATA_URLS = {
23
  "boolq": {
 
47
  },
48
  }
49
 
50
+ _LICENSE = "CC-BY-SA-4.0"
51
+
52
 
53
  class KoBESTConfig(datasets.BuilderConfig):
54
  """Config for building KoBEST"""
 
69
  self.url = url
70
 
71
 
72
+ # class KoBESTConfig(datasets.BuilderConfig):
73
+ # """BuilderConfig for KoTEST."""
74
+ #
75
+ # def __init__(
76
+ # self,
77
+ # features,
78
+ # data_url,
79
+ # file_map,
80
+ # url,
81
+ # **kwargs,
82
+ # ):
83
+ # """BuilderConfig for KoTEST."""
84
+ #
85
+ # super(KoBESTConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
86
+ # self.features = features
87
+ # self.data_url = data_url
88
+ # self.file_map = file_map
89
+ # self.url = url
90
+
91
+
92
  class KoBEST(datasets.GeneratorBasedBuilder):
93
  BUILDER_CONFIGS = [
94
  KoBESTConfig(name=name, description=_DESCRIPTION, data_url=_DATA_URLS[name], citation=_CITATAION, url=_URL)
 
99
  def _info(self):
100
  features = {}
101
  if self.config.name == "boolq":
102
+ labels = ["False", "True"]
103
  features["paragraph"] = datasets.Value("string")
104
  features["question"] = datasets.Value("string")
105
  features["label"] = datasets.features.ClassLabel(names=labels)
 
113
  features["label"] = datasets.features.ClassLabel(names=labels)
114
 
115
  if self.config.name == "wic":
116
+ labels = ["False", "True"]
117
  features["word"] = datasets.Value("string")
118
  features["context_1"] = datasets.Value("string")
119
  features["context_2"] = datasets.Value("string")
 
150
  datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
151
  ]
152
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  def _generate_examples(self, filepath, split):
154
  if self.config.name == "boolq":
155
  df = pd.read_csv(filepath, sep="\t")
156
  df = df.dropna()
157
+ df = df[['Text', 'Question', 'Answer']]
158
 
159
+ df = df.rename(columns={
160
+ 'Text': 'paragraph',
161
+ 'Question': 'question',
162
+ 'Answer': 'label',
163
+ })
164
+ df['label'] = [0 if str(s) == 'False' else 1 for s in df['label'].tolist()]
165
 
166
+ elif self.config.name == "copa":
167
  df = pd.read_csv(filepath, sep="\t")
168
  df = df.dropna()
169
+ df = df[['sentence', 'question', '1', '2', 'Answer']]
170
+
171
+ df = df.rename(columns={
172
+ 'sentence': 'premise',
173
+ 'question': 'question',
174
+ '1': 'alternative_1',
175
+ '2': 'alternative_2',
176
+ 'Answer': 'label',
177
+ })
178
+ df['label'] = [i-1 for i in df['label'].tolist()]
179
+
180
+ elif self.config.name == "wic":
181
  df = pd.read_csv(filepath, sep="\t")
182
  df = df.dropna()
183
+ df = df[['Target', 'SENTENCE1', 'SENTENCE2', 'ANSWER']]
184
 
185
+ df = df.rename(columns={
186
+ 'Target': 'word',
187
+ 'SENTENCE1': 'context_1',
188
+ 'SENTENCE2': 'context_2',
189
+ 'ANSWER': 'label',
190
+ })
191
+ df['label'] = [0 if str(s) == 'False' else 1 for s in df['label'].tolist()]
192
 
193
+ elif self.config.name == "hellaswag":
194
  df = pd.read_csv(filepath, sep="\t")
195
  df = df.dropna()
196
+ df = df[['context', 'choice1', 'choice2', 'choice3', 'choice4', 'label']]
197
+
198
+ # for id_, row in df.iterrows():
199
+ # yield id_, {
200
+ # "context": str(row["context"]),
201
+ # "ending_1": str(row["choice1"]),
202
+ # "ending_2": str(int(row["choice2"])),
203
+ # "ending_3": str(int(row["choice3"])),
204
+ # "ending_4": str(int(row["choice4"])),
205
+ # "label": str(row["label"]),
206
+ # }
207
+ #
208
+ df = df.rename(columns={
209
+ 'context': 'context',
210
+ 'choice1': 'ending_1',
211
+ 'choice2': 'ending_2',
212
+ 'choice3': 'ending_3',
213
+ 'choice4': 'ending_4',
214
+ 'label': 'label',
215
+ })
216
+
217
+ elif self.config.name == "sentineg":
218
  df = pd.read_csv(filepath, sep="\t")
219
  df = df.dropna()
220
+ df = df[['Text', 'Label']]
221
+
222
+ # for id_, row in df.iterrows():
223
+ # yield id_, {
224
+ # "sentence": str(row["Text"]),
225
+ # "label": str(int(row["Label"])),
226
+ # }
227
+
228
+ df = df.rename(columns={
229
+ 'Text': 'sentence',
230
+ 'Label': 'label',
231
+ })
232
+
233
+ else:
234
+ raise NotImplementedError
235
+
236
+ for id_, row in df.iterrows():
237
+ features = {key: row[key] for key in row.keys()}
238
+ yield id_, features
239
+
240
 
241
+ if __name__ == "__main__":
242
+ for task in ['boolq', 'copa', 'wic', 'hellaswag', 'sentineg']:
243
+ dataset = datasets.load_dataset("kobest_v1.py", task, ignore_verifications=True)
244
+ print(dataset)
245
+ print(dataset['train']['label'])
246