add paper to README
Browse files
README.md
CHANGED
@@ -13,4 +13,4 @@ This dataset can be used as a benchmark for clustering word embeddings for <b>Ge
|
|
13 |
|
14 |
The datasets contains book titles and is based on the dataset from the [GermEval 2019 Shared Task on Hierarchical Classification of Blurbs](https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2019-hmc.html). It contains 17'726 unqiue samples, 28 splits with 177 to 16'425 samples and 4 to 93 unique classes. Splits are built similarly to [MTEB](https://github.com/embeddings-benchmark/mteb)'s [ArxivClusteringS2S](https://huggingface.co/datasets/mteb/arxiv-clustering-s2s).
|
15 |
|
16 |
-
Have a look at
|
|
|
13 |
|
14 |
The datasets contains book titles and is based on the dataset from the [GermEval 2019 Shared Task on Hierarchical Classification of Blurbs](https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2019-hmc.html). It contains 17'726 unqiue samples, 28 splits with 177 to 16'425 samples and 4 to 93 unique classes. Splits are built similarly to [MTEB](https://github.com/embeddings-benchmark/mteb)'s [ArxivClusteringS2S](https://huggingface.co/datasets/mteb/arxiv-clustering-s2s).
|
15 |
|
16 |
+
Have a look at German Text Embedding Clustering Benchmark ([Github](https://github.com/ClimSocAna/tecb-de), [Paper](https://arxiv.org/abs/2401.02709)) for more infos, datasets and evaluation results.
|