subatomicseer commited on
Commit
536046d
1 Parent(s): 3096337

Create speech_segment.py

Browse files
Files changed (1) hide show
  1. speech_segment.py +101 -0
speech_segment.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Lint as: python3
2
+ """Speech Segment dataset.
3
+ """
4
+ import os
5
+ from pathlib import Path
6
+
7
+ import datasets
8
+ import torchaudio
9
+
10
+
11
+ class SpeechSegmentConfig(datasets.BuilderConfig):
12
+ """BuilderConfig for Speech Segment.
13
+ For long audio files, segment them into smaller segments of fixed length.
14
+ For short audio files, return the whole audio file.
15
+ """
16
+
17
+ def __init__(self, segment_length, **kwargs):
18
+ super(SpeechSegmentConfig, self).__init__(**kwargs)
19
+ self.segment_length = segment_length
20
+
21
+
22
+ class SpeechSegment(datasets.GeneratorBasedBuilder):
23
+ """Speech Segment dataset."""
24
+
25
+ BUILDER_CONFIGS = [
26
+ SpeechSegmentConfig(name="all", segment_length=60.0,),
27
+ ]
28
+
29
+ @property
30
+ def manual_download_instructions(self):
31
+ return (
32
+ "Specify the data_dir as the path to the folder, will recursively search for .flac and .wav files. "
33
+ "`datasets.load_dataset('subatomicseer/speech_segment', data_dir='path/to/folder/folder_name')`"
34
+ )
35
+
36
+ def _info(self):
37
+ features = datasets.Features(
38
+ {
39
+ "id": datasets.Value("string"),
40
+ "file": datasets.Value("string"),
41
+ 'sample_rate': datasets.Value('int64'),
42
+ 'offset': datasets.Value('int64'),
43
+ 'num_frames': datasets.Value('int64'),
44
+ }
45
+ )
46
+
47
+ return datasets.DatasetInfo(
48
+ features=features,
49
+ )
50
+
51
+ def _split_generators(self, dl_manager):
52
+ base_data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
53
+ if not os.path.exists(base_data_dir):
54
+ raise FileNotFoundError(
55
+ f"{base_data_dir} does not exist. Manual download instructions: {self.manual_download_instructions}"
56
+ )
57
+
58
+ data_dirs = [str(p) for p in Path(base_data_dir).rglob('*') if p.suffix in ['.flac', '.wav']]
59
+ print(f"Found {len(data_dirs)} audio files in {base_data_dir}")
60
+ return [
61
+ datasets.SplitGenerator(
62
+ name=datasets.Split.TRAIN,
63
+ gen_kwargs={"data_dirs": data_dirs},
64
+ ),
65
+ ]
66
+
67
+ def _generate_examples(self, data_dirs):
68
+ for key, path in enumerate(data_dirs):
69
+ path_split = path.split("/")
70
+ id_ = '/'.join(path_split[-4:]).replace(".flac", "")
71
+
72
+ audio_metadata = torchaudio.info(path)
73
+ segment_length = int(self.config.segment_length * audio_metadata.sample_rate)
74
+ total_length = audio_metadata.num_frames
75
+
76
+ if total_length <= segment_length:
77
+ yield id_, {
78
+ "id": id_,
79
+ "file": path,
80
+ 'sample_rate': audio_metadata.sample_rate,
81
+ 'offset': 0,
82
+ 'num_frames': total_length,
83
+ }
84
+ else:
85
+ # generate non-overlapping segments of segment_length
86
+ offsets = list(range(0, total_length, segment_length))
87
+ if total_length - offsets[-1] < 1 * audio_metadata.sample_rate:
88
+ # if the last segment is less than 2 seconds, discard it
89
+ offsets.pop()
90
+
91
+ for segment_id, start in enumerate(offsets):
92
+ end = start + segment_length - 1
93
+ if end > total_length:
94
+ end = total_length
95
+ yield f'{id_}_{segment_id}', {
96
+ "id": f'{id_}_{segment_id}',
97
+ "file": path,
98
+ 'sample_rate': audio_metadata.sample_rate,
99
+ 'offset': start,
100
+ 'num_frames': end-start+1,
101
+ }