|
|
|
"""semantic and acoustic codes dataset with text. |
|
""" |
|
|
|
|
|
import glob |
|
import os |
|
|
|
import datasets |
|
import torch |
|
|
|
|
|
class TextSpeechCodesDatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Text-SpeechCodes dataset.""" |
|
|
|
def __init__(self, **kwargs): |
|
super(TextSpeechCodesDatasetConfig, self).__init__(**kwargs) |
|
|
|
|
|
class TextSpeechCodesDataset(datasets.GeneratorBasedBuilder): |
|
"""Codes dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
TextSpeechCodesDatasetConfig(name="all", description="TextSpeechCodes dataset"), |
|
] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return ( |
|
"Codes should be computed before using this dataset. " |
|
"`datasets.load_dataset('/path/to/this/script', name=all, data_dir='path/to/folder/folder_name/of/codes')`" |
|
) |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"length": datasets.Value("int32"), |
|
"transcription": datasets.Value("string"), |
|
"acoustic_tokens": datasets.Array2D(shape=(None, 12), dtype="int16"), |
|
"semantic_tokens": datasets.Array2D(shape=(None, 1), dtype="int16"), |
|
"transcription_bytes": datasets.Sequence(datasets.Value("uint8")), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
base_data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
if not os.path.exists(base_data_dir): |
|
raise FileNotFoundError( |
|
f"{base_data_dir} does not exist. Make sure you insert a manual dir via " |
|
f"`datasets.load_dataset('/this/script', data_dir=...)` " |
|
f"that includes code files .pt files " |
|
f"dataset. Manual download instructions: {self.manual_download_instructions}" |
|
) |
|
|
|
train_data_dirs = glob.glob(os.path.join(base_data_dir, "**", "*.pt"), recursive=True) |
|
print(f"Found {len(train_data_dirs)} files") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_dirs": train_data_dirs}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dirs): |
|
for key, path in enumerate(data_dirs): |
|
id_ = path.split("/")[-1].replace(".pt", "") |
|
|
|
data = torch.load(path, map_location="cpu", weights_only=False) |
|
for i, (k, v) in enumerate(data.items()): |
|
acoustic_tokens = v["acoustic_codes"] |
|
semantic_tokens = v["semantic_codes"] |
|
|
|
if acoustic_tokens.ndim == 3: |
|
acoustic_tokens = acoustic_tokens.squeeze(0).transpose(0, 1) |
|
else: |
|
acoustic_tokens = acoustic_tokens.transpose(0, 1) |
|
if semantic_tokens.ndim == 2: |
|
semantic_tokens = semantic_tokens.transpose(0, 1) |
|
else: |
|
semantic_tokens = semantic_tokens.unsqueeze(1) |
|
|
|
transcription = v["transcription"] |
|
transcription_bytes = list(transcription.encode("utf-8")) |
|
|
|
yield f"{id_}_{i}", { |
|
"id": f"{id_}_{i}", |
|
"length": semantic_tokens.shape[0] + len(transcription_bytes), |
|
"transcription": transcription, |
|
"transcription_bytes": transcription_bytes, |
|
"acoustic_tokens": acoustic_tokens, |
|
"semantic_tokens": semantic_tokens, |
|
} |
|
|