Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
ArXiv:
License:
import os | |
import datasets | |
from typing import List | |
import json | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
""" | |
_DESCRIPTION = """ | |
This is the dataset repository for a subset of the PLOD Dataset published at LREC 2022 (from cleaned portion accepted at LREC COLING 2024). | |
The dataset can help build sequence labelling models for the task Abbreviation and Long form Detection. | |
""" | |
class PLODfilteredConfig(datasets.BuilderConfig): | |
"""BuilderConfig for PLOD-CW""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for PLOD-CW. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(PLODfilteredConfig, self).__init__(**kwargs) | |
class PLODfilteredConfig(datasets.GeneratorBasedBuilder): | |
"""PLOD CW dataset.""" | |
BUILDER_CONFIGS = [ | |
PLODfilteredConfig(name="PLOD-CW", version=datasets.Version("0.0.5"), description="PLOD CW dataset for NLP 2024"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"pos_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"ADJ", | |
"ADP", | |
"ADV", | |
"AUX", | |
"CONJ", | |
"CCONJ", | |
"DET", | |
"INTJ", | |
"NOUN", | |
"NUM", | |
"PART", | |
"PRON", | |
"PROPN", | |
"PUNCT", | |
"SCONJ", | |
"SYM", | |
"VERB", | |
"X", | |
"SPACE" | |
] | |
) | |
), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"B-O", | |
"B-AC", | |
"I-AC", | |
"B-LF", | |
"I-LF" | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection", | |
citation=_CITATION, | |
) | |
_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-CW/resolve/main/data/" | |
_URLS = { | |
"train": _URL + "train.conll", | |
"dev": _URL + "dev.conll", | |
"test": _URL + "test.conll" | |
} | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
urls_to_download = self._URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
pos_tags = [] | |
ner_tags = [] | |
for line in f: | |
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"pos_tags": pos_tags, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
pos_tags = [] | |
ner_tags = [] | |
else: | |
splits = line.split(" ") | |
tokens.append(splits[0]) | |
pos_tags.append(splits[1]) | |
ner_tags.append(splits[3].rstrip()) | |
# last example | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"pos_tags": pos_tags, | |
"ner_tags": ner_tags, | |
} |