Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
ArXiv:
License:
import os | |
import datasets | |
from typing import List | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
""" | |
_DESCRIPTION = """ | |
This is the dataset repository for a subset of the PLOD Dataset published at LREC 2022 (from cleaned portion accepted at LREC COLING 2024). | |
The dataset can help build sequence labelling models for the task Abbreviation and Long form Detection. | |
""" | |
class PLODfilteredConfig(datasets.BuilderConfig): | |
"""BuilderConfig for PLOD-CW""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for PLOD-CW. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(PLODfilteredConfig, self).__init__(**kwargs) | |
class PLODfilteredConfig(datasets.GeneratorBasedBuilder): | |
"""PLOD CW dataset.""" | |
BUILDER_CONFIGS = [ | |
PLODfilteredConfig(name="PLOD-CW", version=datasets.Version("0.0.5"), description="PLOD CW dataset for NLP 2024"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"pos_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"ADJ", | |
"ADP", | |
"ADV", | |
"AUX", | |
"CONJ", | |
"CCONJ", | |
"DET", | |
"INTJ", | |
"NOUN", | |
"NUM", | |
"PART", | |
"PRON", | |
"PROPN", | |
"PUNCT", | |
"SCONJ", | |
"SYM", | |
"VERB", | |
"X", | |
"SPACE" | |
] | |
) | |
), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"B-O", | |
"B-AC", | |
"I-AC", | |
"B-LF", | |
"I-LF" | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection", | |
citation=_CITATION, | |
) | |