Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
PLOD-CW / PLOD-CW.py
dipteshkanojia's picture
Rename PLOD-CW_old.py to PLOD-CW.py
ecaed14 verified
raw
history blame
2.8 kB
import os
import datasets
from typing import List
logger = datasets.logging.get_logger(__name__)
_CITATION = """
"""
_DESCRIPTION = """
This is the dataset repository for a subset of the PLOD Dataset published at LREC 2022 (from cleaned portion accepted at LREC COLING 2024).
The dataset can help build sequence labelling models for the task Abbreviation and Long form Detection.
"""
class PLODfilteredConfig(datasets.BuilderConfig):
"""BuilderConfig for PLOD-CW"""
def __init__(self, **kwargs):
"""BuilderConfig for PLOD-CW.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(PLODfilteredConfig, self).__init__(**kwargs)
class PLODfilteredConfig(datasets.GeneratorBasedBuilder):
"""PLOD CW dataset."""
BUILDER_CONFIGS = [
PLODfilteredConfig(name="PLOD-CW", version=datasets.Version("0.0.5"), description="PLOD CW dataset for NLP 2024"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"ADJ",
"ADP",
"ADV",
"AUX",
"CONJ",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
"SPACE"
]
)
),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"B-O",
"B-AC",
"I-AC",
"B-LF",
"I-LF"
]
)
),
}
),
supervised_keys=None,
homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection",
citation=_CITATION,
)