Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
ArXiv:
License:
dipteshkanojia
commited on
Commit
•
1760efc
1
Parent(s):
4246c86
added gitignore
Browse files- check.ipynb +0 -192
check.ipynb
DELETED
@@ -1,192 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 4,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [
|
8 |
-
{
|
9 |
-
"name": "stdout",
|
10 |
-
"output_type": "stream",
|
11 |
-
"text": [
|
12 |
-
"0\n"
|
13 |
-
]
|
14 |
-
},
|
15 |
-
{
|
16 |
-
"ename": "IndexError",
|
17 |
-
"evalue": "list index out of range",
|
18 |
-
"output_type": "error",
|
19 |
-
"traceback": [
|
20 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
21 |
-
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
|
22 |
-
"Input \u001b[0;32mIn [4]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 16\u001b[0m tokens\u001b[38;5;241m.\u001b[39mappend(splits[\u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m 17\u001b[0m pos_tags\u001b[38;5;241m.\u001b[39mappend(splits[\u001b[38;5;241m1\u001b[39m])\n\u001b[0;32m---> 18\u001b[0m ner_tags\u001b[38;5;241m.\u001b[39mappend(\u001b[43msplits\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241m.\u001b[39mrstrip())\n\u001b[1;32m 20\u001b[0m \u001b[38;5;66;03m# last example\u001b[39;00m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tokens:\n",
|
23 |
-
"\u001b[0;31mIndexError\u001b[0m: list index out of range"
|
24 |
-
]
|
25 |
-
}
|
26 |
-
],
|
27 |
-
"source": [
|
28 |
-
"with open(\"data/train.conll\", encoding=\"utf-8\") as f:\n",
|
29 |
-
" guid = 0\n",
|
30 |
-
" tokens = []\n",
|
31 |
-
" pos_tags = []\n",
|
32 |
-
" ner_tags = []\n",
|
33 |
-
" for line in f:\n",
|
34 |
-
" if line.startswith(\"-DOCSTART-\") or line == \"\" or line == \"\\n\":\n",
|
35 |
-
" if tokens:\n",
|
36 |
-
" guid += 1\n",
|
37 |
-
" tokens = []\n",
|
38 |
-
" pos_tags = []\n",
|
39 |
-
" ner_tags = []\n",
|
40 |
-
" else:\n",
|
41 |
-
" print(guid)\n",
|
42 |
-
" splits = line.split(\" \")\n",
|
43 |
-
" tokens.append(splits[0])\n",
|
44 |
-
" pos_tags.append(splits[1])\n",
|
45 |
-
" ner_tags.append(splits[2].rstrip())\n",
|
46 |
-
"\n",
|
47 |
-
" # last example\n",
|
48 |
-
" if tokens:\n",
|
49 |
-
" print(\"lst\")"
|
50 |
-
]
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"cell_type": "code",
|
54 |
-
"execution_count": 16,
|
55 |
-
"metadata": {},
|
56 |
-
"outputs": [
|
57 |
-
{
|
58 |
-
"name": "stderr",
|
59 |
-
"output_type": "stream",
|
60 |
-
"text": [
|
61 |
-
"Reusing dataset plod-cw (/home/diptesh/.cache/huggingface/datasets/surrey-nlp___plod-cw/PLOD-CW/0.0.5/ded93459451683583207c3ccb6a22ebeeafd54733e72757b6f73806d9aca6e83)\n"
|
62 |
-
]
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"data": {
|
66 |
-
"application/json": {
|
67 |
-
"ascii": false,
|
68 |
-
"bar_format": null,
|
69 |
-
"colour": null,
|
70 |
-
"elapsed": 0.010100603103637695,
|
71 |
-
"initial": 0,
|
72 |
-
"n": 0,
|
73 |
-
"ncols": null,
|
74 |
-
"nrows": null,
|
75 |
-
"postfix": null,
|
76 |
-
"prefix": "",
|
77 |
-
"rate": null,
|
78 |
-
"total": 3,
|
79 |
-
"unit": "it",
|
80 |
-
"unit_divisor": 1000,
|
81 |
-
"unit_scale": false
|
82 |
-
},
|
83 |
-
"application/vnd.jupyter.widget-view+json": {
|
84 |
-
"model_id": "1f468deeb0f34c0b8fe8bdd94301ba38",
|
85 |
-
"version_major": 2,
|
86 |
-
"version_minor": 0
|
87 |
-
},
|
88 |
-
"text/plain": [
|
89 |
-
" 0%| | 0/3 [00:00<?, ?it/s]"
|
90 |
-
]
|
91 |
-
},
|
92 |
-
"metadata": {},
|
93 |
-
"output_type": "display_data"
|
94 |
-
}
|
95 |
-
],
|
96 |
-
"source": [
|
97 |
-
"from datasets import load_dataset\n",
|
98 |
-
"dataset = load_dataset(\"surrey-nlp/PLOD-CW\")"
|
99 |
-
]
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"cell_type": "code",
|
103 |
-
"execution_count": 17,
|
104 |
-
"metadata": {},
|
105 |
-
"outputs": [
|
106 |
-
{
|
107 |
-
"name": "stdout",
|
108 |
-
"output_type": "stream",
|
109 |
-
"text": [
|
110 |
-
"1072\n",
|
111 |
-
"126\n",
|
112 |
-
"153\n"
|
113 |
-
]
|
114 |
-
}
|
115 |
-
],
|
116 |
-
"source": [
|
117 |
-
"print(len(dataset['train']))\n",
|
118 |
-
"print(len(dataset['validation']))\n",
|
119 |
-
"print(len(dataset['test']))"
|
120 |
-
]
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"cell_type": "code",
|
124 |
-
"execution_count": 18,
|
125 |
-
"metadata": {},
|
126 |
-
"outputs": [
|
127 |
-
{
|
128 |
-
"name": "stdout",
|
129 |
-
"output_type": "stream",
|
130 |
-
"text": [
|
131 |
-
"15\n"
|
132 |
-
]
|
133 |
-
}
|
134 |
-
],
|
135 |
-
"source": [
|
136 |
-
"print(len(dataset['train'][0]['tokens']))"
|
137 |
-
]
|
138 |
-
},
|
139 |
-
{
|
140 |
-
"cell_type": "code",
|
141 |
-
"execution_count": 22,
|
142 |
-
"metadata": {},
|
143 |
-
"outputs": [
|
144 |
-
{
|
145 |
-
"name": "stdout",
|
146 |
-
"output_type": "stream",
|
147 |
-
"text": [
|
148 |
-
"323\n"
|
149 |
-
]
|
150 |
-
}
|
151 |
-
],
|
152 |
-
"source": [
|
153 |
-
"split='train'\n",
|
154 |
-
"maxLen = 0\n",
|
155 |
-
"for i in range(len(dataset[split])):\n",
|
156 |
-
" instanceLen = len(dataset['train'][i]['tokens'])\n",
|
157 |
-
" if instanceLen > maxLen:\n",
|
158 |
-
" maxLen = instanceLen\n",
|
159 |
-
"\n",
|
160 |
-
"print(maxLen)\n"
|
161 |
-
]
|
162 |
-
},
|
163 |
-
{
|
164 |
-
"cell_type": "code",
|
165 |
-
"execution_count": null,
|
166 |
-
"metadata": {},
|
167 |
-
"outputs": [],
|
168 |
-
"source": []
|
169 |
-
}
|
170 |
-
],
|
171 |
-
"metadata": {
|
172 |
-
"kernelspec": {
|
173 |
-
"display_name": "hfdataset",
|
174 |
-
"language": "python",
|
175 |
-
"name": "python3"
|
176 |
-
},
|
177 |
-
"language_info": {
|
178 |
-
"codemirror_mode": {
|
179 |
-
"name": "ipython",
|
180 |
-
"version": 3
|
181 |
-
},
|
182 |
-
"file_extension": ".py",
|
183 |
-
"mimetype": "text/x-python",
|
184 |
-
"name": "python",
|
185 |
-
"nbconvert_exporter": "python",
|
186 |
-
"pygments_lexer": "ipython3",
|
187 |
-
"version": "3.9.12"
|
188 |
-
}
|
189 |
-
},
|
190 |
-
"nbformat": 4,
|
191 |
-
"nbformat_minor": 2
|
192 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|