Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
dipteshkanojia commited on
Commit
fcadcc2
1 Parent(s): 2c12296

modify readme

Browse files
Files changed (1) hide show
  1. README.md +33 -32
README.md CHANGED
@@ -24,6 +24,39 @@ task_ids:
24
 
25
  This is the repository for PLOD Dataset subset being used for CW in NLP module 2023-2024 at University of Surrey.
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ### Original Dataset (Only for exploration. For CW, You must USE THE PLOD-CW subset)
28
 
29
  We provide two variants of our dataset - Filtered and Unfiltered. They are described in our paper here.
@@ -67,38 +100,6 @@ We provide two variants of our dataset - Filtered and Unfiltered. They are descr
67
  - **Leaderboard:** https://paperswithcode.com/sota/abbreviationdetection-on-plod-filtered
68
  - **Point of Contact:** [Diptesh Kanojia](mailto:d.kanojia@surrey.ac.uk)
69
 
70
- ### Dataset Summary
71
-
72
- This PLOD Dataset is an English-language dataset of abbreviations and their long-forms tagged in text. The dataset has been collected for research from the PLOS journals indexing of abbreviations and long-forms in the text. This dataset was created to support the Natural Language Processing task of abbreviation detection and covers the scientific domain.
73
-
74
- ### Supported Tasks and Leaderboards
75
-
76
- This dataset primarily supports the Abbreviation Detection Task. It has also been tested on a train+dev split provided by the Acronym Detection Shared Task organized as a part of the Scientific Document Understanding (SDU) workshop at AAAI 2022.
77
-
78
-
79
- ### Languages
80
-
81
- English
82
-
83
- ## Dataset Structure
84
-
85
- ### Data Instances
86
-
87
- A typical data point comprises an ID, a set of `tokens` present in the text, a set of `pos_tags` for the corresponding tokens obtained via Spacy NER, and a set of `ner_tags` which are limited to `AC` for `Acronym` and `LF` for `long-forms`.
88
-
89
- An example from the dataset:
90
- {'id': '1',
91
- 'tokens': ['Study', '-', 'specific', 'risk', 'ratios', '(', 'RRs', ')', 'and', 'mean', 'BW', 'differences', 'were', 'calculated', 'using', 'linear', 'and', 'log', '-', 'binomial', 'regression', 'models', 'controlling', 'for', 'confounding', 'using', 'inverse', 'probability', 'of', 'treatment', 'weights', '(', 'IPTW', ')', 'truncated', 'at', 'the', '1st', 'and', '99th', 'percentiles', '.'],
92
- 'pos_tags': [8, 13, 0, 8, 8, 13, 12, 13, 5, 0, 12, 8, 3, 16, 16, 0, 5, 0, 13, 0, 8, 8, 16, 1, 8, 16, 0, 8, 1, 8, 8, 13, 12, 13, 16, 1, 6, 0, 5, 0, 8, 13],
93
- 'ner_tags': [0, 0, 0, 3, 4, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
94
- }
95
-
96
- ### Data Fields
97
-
98
- - id: the row identifier for the dataset point.
99
- - tokens: The tokens contained in the text.
100
- - pos_tags: the Part-of-Speech tags obtained for the corresponding token above from Spacy NER.
101
- - ner_tags: The tags for abbreviations and long-forms.
102
 
103
  ## Dataset Creation
104
 
 
24
 
25
  This is the repository for PLOD Dataset subset being used for CW in NLP module 2023-2024 at University of Surrey.
26
 
27
+ ### Dataset Summary
28
+
29
+ This PLOD Dataset is an English-language dataset of abbreviations and their long-forms tagged in text. The dataset has been collected for research from the PLOS journals indexing of abbreviations and long-forms in the text. This dataset was created to support the Natural Language Processing task of abbreviation detection and covers the scientific domain.
30
+
31
+ ### Supported Tasks and Leaderboards
32
+
33
+ This dataset primarily supports the Abbreviation Detection Task. It has also been tested on a train+dev split provided by the Acronym Detection Shared Task organized as a part of the Scientific Document Understanding (SDU) workshop at AAAI 2022.
34
+
35
+
36
+ ### Languages
37
+
38
+ English
39
+
40
+ ## Dataset Structure
41
+
42
+ ### Data Instances
43
+
44
+ A typical data point comprises an ID, a set of `tokens` present in the text, a set of `pos_tags` for the corresponding tokens obtained via Spacy NER, and a set of `ner_tags` which are limited to `AC` for `Acronym` and `LF` for `long-forms`.
45
+
46
+ An example from the dataset:
47
+ {'id': '1',
48
+ 'tokens': ['Study', '-', 'specific', 'risk', 'ratios', '(', 'RRs', ')', 'and', 'mean', 'BW', 'differences', 'were', 'calculated', 'using', 'linear', 'and', 'log', '-', 'binomial', 'regression', 'models', 'controlling', 'for', 'confounding', 'using', 'inverse', 'probability', 'of', 'treatment', 'weights', '(', 'IPTW', ')', 'truncated', 'at', 'the', '1st', 'and', '99th', 'percentiles', '.'],
49
+ 'pos_tags': [8, 13, 0, 8, 8, 13, 12, 13, 5, 0, 12, 8, 3, 16, 16, 0, 5, 0, 13, 0, 8, 8, 16, 1, 8, 16, 0, 8, 1, 8, 8, 13, 12, 13, 16, 1, 6, 0, 5, 0, 8, 13],
50
+ 'ner_tags': [0, 0, 0, 3, 4, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
51
+ }
52
+
53
+ ### Data Fields
54
+
55
+ - id: the row identifier for the dataset point.
56
+ - tokens: The tokens contained in the text.
57
+ - pos_tags: the Part-of-Speech tags obtained for the corresponding token above from Spacy NER.
58
+ - ner_tags: The tags for abbreviations and long-forms.
59
+
60
  ### Original Dataset (Only for exploration. For CW, You must USE THE PLOD-CW subset)
61
 
62
  We provide two variants of our dataset - Filtered and Unfiltered. They are described in our paper here.
 
100
  - **Leaderboard:** https://paperswithcode.com/sota/abbreviationdetection-on-plod-filtered
101
  - **Point of Contact:** [Diptesh Kanojia](mailto:d.kanojia@surrey.ac.uk)
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
  ## Dataset Creation
105