import os import datasets from typing import List logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = """ This is the dataset repository for a subset of the PLOD Dataset published at LREC 2022 (from cleaned portion accepted at LREC COLING 2024). The dataset can help build sequence labelling models for the task Abbreviation and Long form Detection. """ class PLODfilteredConfig(datasets.BuilderConfig): """BuilderConfig for PLOD-CW""" def __init__(self, **kwargs): """BuilderConfig for PLOD-CW. Args: **kwargs: keyword arguments forwarded to super. """ super(PLODfilteredConfig, self).__init__(**kwargs) class PLODfilteredConfig(datasets.GeneratorBasedBuilder): """PLOD CW dataset.""" BUILDER_CONFIGS = [ PLODfilteredConfig(name="PLOD-CW", version=datasets.Version("0.0.5"), description="PLOD CW dataset for NLP 2024"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "ADJ", "ADP", "ADV", "AUX", "CONJ", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", "SPACE" ] ) ), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "B-O", "B-AC", "I-AC", "B-LF", "I-LF" ] ) ), } ), supervised_keys=None, homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection", citation=_CITATION, ) _URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-CW/resolve/main/data/" _URLS = { "train": _URL + "train.conll", "dev": _URL + "dev.conll", "test": _URL + "test.conll" } def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls_to_download = self._URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] pos_tags = [] ner_tags = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "ner_tags": ner_tags, } guid += 1 tokens = [] pos_tags = [] ner_tags = [] else: splits = line.split(" ") tokens.append(splits[0]) pos_tags.append(splits[1]) ner_tags.append(splits[2].rstrip()) # last example if tokens: yield guid, { "id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "ner_tags": ner_tags, }