Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 6,295 Bytes
fe2f1d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79750b5
 
 
fe2f1d0
79750b5
 
 
4575131
79750b5
 
 
 
 
 
 
 
 
 
fe2f1d0
 
79750b5
 
 
fe2f1d0
 
79750b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe2f1d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """
"""

_DESCRIPTION = """
This is the dataset repository for PLOD Dataset accepted to be published at LREC 2022.
The dataset can help build sequence labelling models for the task Abbreviation Detection.
"""

class PLODfilteredConfig(datasets.BuilderConfig):
    """BuilderConfig for Conll2003"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(PLODfilteredConfig, self).__init__(**kwargs)


class PLODfilteredConfig(datasets.GeneratorBasedBuilder):
    """PLOD Filtered dataset."""

    BUILDER_CONFIGS = [
        PLODfilteredConfig(name="PLODfiltered", version=datasets.Version("0.0.2"), description="PLOD filtered dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "ADJ",
                                "ADP",
                                "ADV",
                                "AUX",
                                "CONJ",
                                "CCONJ",
                                "DET",
                                "INTJ",
                                "NOUN",
                                "NUM",
                                "PART",
                                "PRON",
                                "PROPN",
                                "PUNCT",
                                "SCONJ",
                                "SYM",
                                "VERB",
                                "X",
                                "SPACE"
                            ]
                        )
                    ),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-O",
                                "B-AC",
                                "I-AC",
                                "B-LF",
                                "I-LF"
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection",
            citation=_CITATION,
        )
    # _TRAINING_FILE_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/PLOS-train70-filtered-pos_bio.json"
    # _DEV_FILE_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/PLOS-val15-filtered-pos_bio.json"
    # _TEST_FILE_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/PLOS-test15-filtered-pos_bio.json"

    # _TRAINING_FILE = "PLOS-train70-filtered-pos_bio.json"
    # _DEV_FILE = "PLOS-val15-filtered-pos_bio.json"
    # _TEST_FILE = "PLOS-test15-filtered-pos_bio.json"

    _URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/"
    _URLS = {
        "train": _URL + "PLOS-train70-filtered-pos_bio.json",
        "dev": _URL + "PLOS-val15-filtered-pos_bio.json",
        "test": _URL + "PLOS-test15-filtered-pos_bio.json"
    }

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls_to_download = self._URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
        ]

    # def _split_generators(self, dl_manager):
    #     """Returns SplitGenerators."""
    #     downloaded_train = dl_manager.download_and_extract(_TRAINING_FILE_URL)
    #     downloaded_val = dl_manager.download_and_extract(_DEV_FILE_URL)
    #     downloaded_test = dl_manager.download_and_extract(_TEST_FILE_URL)

    #     data_files = {
    #         "train": _TRAINING_FILE,
    #         "dev": _DEV_FILE,
    #         "test": _TEST_FILE,
    #     }

    #     return [
    #         datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
    #         datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
    #         datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
    #     ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            pos_tags = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "pos_tags": pos_tags,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        pos_tags = []
                        ner_tags = []
                else:
                    # conll2003 tokens are space separated
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    pos_tags.append(splits[1].strip())
                    ner_tags.append(splits[2].strip())
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "pos_tags": pos_tags,
                "ner_tags": ner_tags,
            }