Datasets:
Tasks:
Token Classification
Modalities:
Text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
abbreviation-detection
License:
File size: 6,318 Bytes
fe2f1d0 a87ff0e fe2f1d0 79750b5 fe2f1d0 79750b5 4575131 79750b5 fe2f1d0 79750b5 fe2f1d0 79750b5 fe2f1d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
import datasets
from typing import List
logger = datasets.logging.get_logger(__name__)
_CITATION = """
"""
_DESCRIPTION = """
This is the dataset repository for PLOD Dataset accepted to be published at LREC 2022.
The dataset can help build sequence labelling models for the task Abbreviation Detection.
"""
class PLODfilteredConfig(datasets.BuilderConfig):
"""BuilderConfig for Conll2003"""
def __init__(self, **kwargs):
"""BuilderConfig forConll2003.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(PLODfilteredConfig, self).__init__(**kwargs)
class PLODfilteredConfig(datasets.GeneratorBasedBuilder):
"""PLOD Filtered dataset."""
BUILDER_CONFIGS = [
PLODfilteredConfig(name="PLODfiltered", version=datasets.Version("0.0.2"), description="PLOD filtered dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"ADJ",
"ADP",
"ADV",
"AUX",
"CONJ",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
"SPACE"
]
)
),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"B-O",
"B-AC",
"I-AC",
"B-LF",
"I-LF"
]
)
),
}
),
supervised_keys=None,
homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection",
citation=_CITATION,
)
# _TRAINING_FILE_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/PLOS-train70-filtered-pos_bio.json"
# _DEV_FILE_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/PLOS-val15-filtered-pos_bio.json"
# _TEST_FILE_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/PLOS-test15-filtered-pos_bio.json"
# _TRAINING_FILE = "PLOS-train70-filtered-pos_bio.json"
# _DEV_FILE = "PLOS-val15-filtered-pos_bio.json"
# _TEST_FILE = "PLOS-test15-filtered-pos_bio.json"
_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/"
_URLS = {
"train": _URL + "PLOS-train70-filtered-pos_bio.json",
"dev": _URL + "PLOS-val15-filtered-pos_bio.json",
"test": _URL + "PLOS-test15-filtered-pos_bio.json"
}
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls_to_download = self._URLS
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
]
# def _split_generators(self, dl_manager):
# """Returns SplitGenerators."""
# downloaded_train = dl_manager.download_and_extract(_TRAINING_FILE_URL)
# downloaded_val = dl_manager.download_and_extract(_DEV_FILE_URL)
# downloaded_test = dl_manager.download_and_extract(_TEST_FILE_URL)
# data_files = {
# "train": _TRAINING_FILE,
# "dev": _DEV_FILE,
# "test": _TEST_FILE,
# }
# return [
# datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
# datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
# datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
# ]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
pos_tags = []
ner_tags = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"pos_tags": pos_tags,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
pos_tags = []
ner_tags = []
else:
# conll2003 tokens are space separated
splits = line.split(" ")
tokens.append(splits[0])
pos_tags.append(splits[1].strip())
ner_tags.append(splits[2].strip())
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"pos_tags": pos_tags,
"ner_tags": ner_tags,
} |