--- annotations_creators: - Leonardo Zilio, Hadeel Saadany, Prashant Sharma, Diptesh Kanojia, Constantin Orasan language_creators: - found language: - en license: - cc-by-sa4.0 multilinguality: - monolingual paperswithcode_id: plod-filtered pretty_name: 'PLOD: An Abbreviation Detection Dataset' size_categories: - 100K 2. The Unfiltered version can be accessed via [Huggingface Datasets here](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) and a [CONLL format is present here](https://github.com/surrey-nlp/PLOD-AbbreviationDetection).
3. The [SDU Shared Task](https://sites.google.com/view/sdu-aaai22/home) data we use for zero-shot testing is [available here](https://huggingface.co/datasets/surrey-nlp/SDU-test). # Dataset Card for PLOD-filtered ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [Needs More Information] - **Repository:** https://github.com/surrey-nlp/PLOD-AbbreviationDetection - **Paper:** https://arxiv.org/abs/2204.12061 - **Leaderboard:** https://paperswithcode.com/sota/abbreviationdetection-on-plod-filtered - **Point of Contact:** [Diptesh Kanojia](mailto:d.kanojia@surrey.ac.uk) ### Dataset Summary This PLOD Dataset is an English-language dataset of abbreviations and their long-forms tagged in text. The dataset has been collected for research from the PLOS journals indexing of abbreviations and long-forms in the text. This dataset was created to support the Natural Language Processing task of abbreviation detection and covers the scientific domain. ### Supported Tasks and Leaderboards This dataset primarily supports the Abbreviation Detection Task. It has also been tested on a train+dev split provided by the Acronym Detection Shared Task organized as a part of the Scientific Document Understanding (SDU) workshop at AAAI 2022. ### Languages English ## Dataset Structure ### Data Instances A typical data point comprises an ID, a set of `tokens` present in the text, a set of `pos_tags` for the corresponding tokens obtained via Spacy NER, and a set of `ner_tags` which are limited to `AC` for `Acronym` and `LF` for `long-forms`. An example from the dataset: {'id': '1', 'tokens': ['Study', '-', 'specific', 'risk', 'ratios', '(', 'RRs', ')', 'and', 'mean', 'BW', 'differences', 'were', 'calculated', 'using', 'linear', 'and', 'log', '-', 'binomial', 'regression', 'models', 'controlling', 'for', 'confounding', 'using', 'inverse', 'probability', 'of', 'treatment', 'weights', '(', 'IPTW', ')', 'truncated', 'at', 'the', '1st', 'and', '99th', 'percentiles', '.'], 'pos_tags': [8, 13, 0, 8, 8, 13, 12, 13, 5, 0, 12, 8, 3, 16, 16, 0, 5, 0, 13, 0, 8, 8, 16, 1, 8, 16, 0, 8, 1, 8, 8, 13, 12, 13, 16, 1, 6, 0, 5, 0, 8, 13], 'ner_tags': [0, 0, 0, 3, 4, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] } ### Data Fields - id: the row identifier for the dataset point. - tokens: The tokens contained in the text. - pos_tags: the Part-of-Speech tags obtained for the corresponding token above from Spacy NER. - ner_tags: The tags for abbreviations and long-forms. ### Data Splits | | Train | Valid | Test | | ----- | ------ | ----- | ---- | | Filtered | 112652 | 24140 | 24140| | Unfiltered | 113860 | 24399 | 24399| ## Dataset Creation ### Source Data #### Initial Data Collection and Normalization Extracting the data from PLOS Journals online and then tokenization, normalization. #### Who are the source language producers? PLOS Journal ## Additional Information ### Dataset Curators The dataset was initially created by Leonardo Zilio, Hadeel Saadany, Prashant Sharma, Diptesh Kanojia, Constantin Orasan. ### Licensing Information CC-BY-SA 4.0 ### Citation Information [Needs More Information] ### Installation We use the custom NER pipeline in the [spaCy transformers](https://spacy.io/universe/project/spacy-transformers) library to train our models. This library supports training via any pre-trained language models available at the :rocket: [HuggingFace repository](https://huggingface.co/).
Please see the instructions at these websites to setup your own custom training with our dataset to reproduce the experiments using Spacy. OR
However, you can also reproduce the experiments via the Python notebook we [provide here](https://github.com/surrey-nlp/PLOD-AbbreviationDetection/blob/main/nbs/fine_tuning_abbr_det.ipynb) which uses HuggingFace Trainer class to perform the same experiments. The exact hyperparameters can be obtained from the models readme cards linked below. Before starting, please perform the following steps: ```bash git clone https://github.com/surrey-nlp/PLOD-AbbreviationDetection cd PLOD-AbbreviationDetection pip install -r requirements.txt ``` Now, you can use the notebook to reproduce the experiments. ### Model(s) Our best performing models are hosted on the HuggingFace models repository | Models | [`PLOD - Unfiltered`](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) | [`PLOD - Filtered`](https://huggingface.co/datasets/surrey-nlp/PLOD-filtered) | Description | | --- | :---: | :---: | --- | | [RoBERTalarge](https://huggingface.co/roberta-large) | [RoBERTalarge-finetuned-abbr](https://huggingface.co/surrey-nlp/roberta-large-finetuned-abbr) | -soon- | Fine-tuning on the RoBERTalarge language model | | [RoBERTabase](https://huggingface.co/roberta-base) | -soon- | [RoBERTabase-finetuned-abbr](https://huggingface.co/surrey-nlp/roberta-large-finetuned-abbr) | Fine-tuning on the RoBERTabase language model | | [AlBERTlarge-v2](https://huggingface.co/albert-large-v2) | [AlBERTlarge-v2-finetuned-abbDet](https://huggingface.co/surrey-nlp/albert-large-v2-finetuned-abbDet) | -soon- | Fine-tuning on the AlBERTlarge-v2 language model | On the link provided above, the model(s) can be used with the help of the Inference API via the web-browser itself. We have placed some examples with the API for testing.
### Usage You can use the HuggingFace Model link above to find the instructions for using this model in Python locally using the notebook provided in the Git repo.