File size: 15,325 Bytes
3bb05c0 9c24f3e 3bb05c0 1188314 3bb05c0 9c24f3e a165712 9c24f3e a165712 3bb05c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
import datasets
_CITATION = """\
@misc{cooper2021generalization,
title={Generalization Ability of MOS Prediction Networks},
author={Erica Cooper and Wen-Chin Huang and Tomoki Toda and Junichi Yamagishi},
year={2021},
eprint={2110.02635},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset is for internal use only. For voicemos challenge
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://codalab.lisn.upsaclay.fr/competitions/695"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "INTERNAL"
class BvccDataset(datasets.GeneratorBasedBuilder):
"""BVCC dataset for voicemos challenge 2022"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="main_track",
version=VERSION,
description="main track dataset by wavfiles",
),
datasets.BuilderConfig(
name="main_track_listeners",
version=VERSION,
description="main track dataset by listener rating",
),
datasets.BuilderConfig(
name="ood_track", version=VERSION, description="Out of domain dataset"
),
datasets.BuilderConfig(
name="ood_track_unlabeled",
version=VERSION,
description="Out of domain dataset unlabeled",
),
datasets.BuilderConfig(
name="ood_track_listeners",
version=VERSION,
description="ood track dataset by listener rating",
),
]
DEFAULT_CONFIG_NAME = "main_track" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if (
self.config.name == "main_track"
): # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"sysID": datasets.Value("string"),
"uttID": datasets.Value("string"),
"averaged rating": datasets.Value("float32"),
# These are the features of your dataset like images, labels ...
}
)
elif self.config.name == "main_track_listeners":
# sysID,uttID,rating,ignore,listenerinfo
# {}_AGERANGE_LISTENERID_GENDER_[ignore]_[ignore]_HEARINGIMPAIRMENT
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"sysID": datasets.Value("string"),
"uttID": datasets.Value("string"),
"rating": datasets.Value("int8"),
"age range": datasets.Value("string"),
"listener id": datasets.Value("string"),
"gender": datasets.Value("string"),
"hearing impairment": datasets.Value("string"),
}
)
elif (
self.config.name == "ood_track"
): # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"sysID": datasets.Value("string"),
"uttID": datasets.Value("string"),
"averaged rating": datasets.Value("float32"),
# These are the features of your dataset like images, labels ...
}
)
elif self.config.name == "ood_track_listeners":
# sysID,uttID,rating,ignore,listenerinfo
# {}_AGERANGE_LISTENERID_GENDER_[ignore]_[ignore]_HEARINGIMPAIRMENT
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"sysID": datasets.Value("string"),
"uttID": datasets.Value("string"),
"rating": datasets.Value("int8"),
"age range": datasets.Value("string"),
"listener id": datasets.Value("string"),
"gender": datasets.Value("string"),
"hearing impairment": datasets.Value("string"),
}
)
elif self.config.name == "ood_track_unlabeled":
# sysID,uttID,rating,ignore,listenerinfo
# {}_AGERANGE_LISTENERID_GENDER_[ignore]_[ignore]_HEARINGIMPAIRMENT
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"sysID": datasets.Value("string"),
"uttID": datasets.Value("string"),
}
)
else:
raise ValueError(f"invalid config name {self.config.name}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = self.config.data_dir
if "listeners" in self.config.name:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "DATA/sets/TRAINSET"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "DATA/sets/DEVSET"),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "DATA/sets/TESTSET"),
"split": "test",
},
),
]
elif "unlabeled" in self.config.name:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
data_dir, "DATA/sets/unlabeled_mos_list.txt"
),
"split": "train",
},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
data_dir, "DATA/sets/train_mos_list.txt"
),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
data_dir, "DATA/sets/val_mos_list.txt"
),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "DATA/sets/test_mos_list.txt"),
"split": "test",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f.readlines()):
data = row.strip().split(",")
print(data)
if self.config.name == "main_track":
sysID, uttID = data[0].split("-")
uttID = uttID.replace(".wav", "")
if len(data) > 1:
score = data[1]
else:
score = 999
# Yields examples as (key, example) tuples
path = os.path.join(self.config.data_dir, "DATA/wav/", data[0])
yield key, {
"path": path,
"audio": path,
"sysID": sysID,
"uttID": uttID,
"averaged rating": score,
}
elif self.config.name == "main_track_listeners":
if len(data) > 1:
rating = data[1]
sysID, path, rating, _, listenerinfo = data
_, age, listenrID, gender, _, _, hearingImpairement = (
listenerinfo.split("_")
)
else:
sysID, uttID = data[0].split("-")
uttID = uttID.replace(".wav", "")
rating = 999
age = 999
listenrID = 999
gender = 999
path = data[0]
uttID = path.split("-")[-1]
uttID = uttID.replace(".wav", "")
path = os.path.join(self.config.data_dir, "DATA/wav/", path)
yield key, {
"path": path,
"audio": path,
"sysID": sysID,
"uttID": uttID,
"rating": rating,
"age range": age,
"listener id": listenrID,
"gender": gender,
"hearing impairment": hearingImpairement,
}
if self.config.name == "ood_track":
sysID, uttID = data[0].split("-")
uttID = uttID.replace(".wav", "")
if len(data) > 1:
score = data[1]
else:
score = 999
# Yields examples as (key, example) tuples
path = os.path.join(self.config.data_dir, "DATA/wav/", data[0])
yield key, {
"path": path,
"audio": path,
"sysID": sysID,
"uttID": uttID,
"averaged rating": score,
}
elif self.config.name == "ood_track_listeners":
if len(data) > 1:
rating = data[1]
sysID, path, rating, _, listenerinfo = data
_, age, listenrID, gender, _, _, hearingImpairement = (
listenerinfo.split("_")
)
else:
sysID, uttID = data[0].split("-")
uttID = uttID.replace(".wav", "")
path = data[0]
rating = 999
age = 999
listenrID = 999
gender = 999
uttID = path.split("-")[-1]
uttID = uttID.replace(".wav", "")
path = os.path.join(self.config.data_dir, "DATA/wav/", path)
yield key, {
"path": path,
"audio": path,
"sysID": sysID,
"uttID": uttID,
"rating": rating,
"age range": age,
"listener id": listenrID,
"gender": gender,
"hearing impairment": hearingImpairement,
}
if self.config.name == "ood_track_unlabeled":
sysID, uttID = data[0].strip().split("-")
uttID = uttID.replace(".wav", "")
# Yields examples as (key, example) tuples
path = os.path.join(
self.config.data_dir, "DATA/wav/", data[0].strip()
)
yield key, {
"path": path,
"audio": path,
"sysID": sysID,
"uttID": uttID,
}
|