import csv import json import os logger = datasets.logging.get_logger(__name__) import datasets _CITATION = """\ @InProceedings{meng-EtAl:2017:Long, author = {Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and Brusilovsky, Peter and Chi, Yu}, title = {Deep Keyphrase Generation}, booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, month = {July}, year = {2017}, address = {Vancouver, Canada}, publisher = {Association for Computational Linguistics}, pages = {582--592}, url = {http://aclweb.org/anthology/P17-1054} } """ # You can copy an official description _DESCRIPTION = """\ KP20k dataset for keyphrase extraction and generation in scientific paper. """ _HOMEPAGE = "http://memray.me/uploads/acl17-keyphrase-generation.pdf" # License information from the original source page https://github.com/memray/seq2seq-keyphrase _LICENSE = "MIT LICENSE" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { "test": "test.json", "train": "train.json", "validation": "validation.json" } class KP20kConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(KP20kConfig, self).__init__(**kwargs) # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case class KP20k(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1","") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ KP20kConfig( name="raw", version=VERSION, description="This part of the dataset covers the raw data.", ), ] #DEFAULT_CONFIG_NAME = "raw" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset print(self.config) features = datasets.Features( { 'id': datasets.Value(dtype="string"), "title": datasets.Value("string"), "abstract": datasets.Value("string"), "keyphrases": datasets.features.Sequence(datasets.Value("string")), "prmu": datasets.features.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive urls = _URLS data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir,"train.json"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir,"test.json"), "split": "test" }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir,"validation.json"), "split": "validation", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) # Yields examples as (key, example) tuples yield key, { "id": data["id"], "title": data["title"], "abstract": data["abstract"], "keyphrases": data["keyphrases"], "prmu": data["prmu"], }