Adding stats
Browse files- prmu.py +99 -0
- stats.ipynb +312 -0
prmu.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
import spacy
|
6 |
+
|
7 |
+
from nltk.stem.snowball import SnowballStemmer as Stemmer
|
8 |
+
|
9 |
+
nlp = spacy.load("en_core_web_sm")
|
10 |
+
|
11 |
+
# https://spacy.io/usage/linguistic-features#native-tokenizer-additions
|
12 |
+
|
13 |
+
from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER
|
14 |
+
from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS
|
15 |
+
from spacy.util import compile_infix_regex
|
16 |
+
|
17 |
+
# Modify tokenizer infix patterns
|
18 |
+
infixes = (
|
19 |
+
LIST_ELLIPSES
|
20 |
+
+ LIST_ICONS
|
21 |
+
+ [
|
22 |
+
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
|
23 |
+
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
|
24 |
+
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
|
25 |
+
),
|
26 |
+
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
|
27 |
+
# ✅ Commented out regex that splits on hyphens between letters:
|
28 |
+
# r"(?<=[{a}])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
|
29 |
+
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
|
30 |
+
]
|
31 |
+
)
|
32 |
+
|
33 |
+
infix_re = compile_infix_regex(infixes)
|
34 |
+
nlp.tokenizer.infix_finditer = infix_re.finditer
|
35 |
+
|
36 |
+
|
37 |
+
def contains(subseq, inseq):
|
38 |
+
return any(inseq[pos:pos + len(subseq)] == subseq for pos in range(0, len(inseq) - len(subseq) + 1))
|
39 |
+
|
40 |
+
|
41 |
+
def find_pmru(tok_title, tok_text, tok_kp):
|
42 |
+
"""Find PRMU category of a given keyphrase."""
|
43 |
+
|
44 |
+
# if kp is present
|
45 |
+
if contains(tok_kp, tok_title) or contains(tok_kp, tok_text):
|
46 |
+
return "P"
|
47 |
+
|
48 |
+
# if kp is considered as absent
|
49 |
+
else:
|
50 |
+
|
51 |
+
# find present and absent words
|
52 |
+
present_words = [w for w in tok_kp if w in tok_title or w in tok_text]
|
53 |
+
|
54 |
+
# if "all" words are present
|
55 |
+
if len(present_words) == len(tok_kp):
|
56 |
+
return "R"
|
57 |
+
# if "some" words are present
|
58 |
+
elif len(present_words) > 0:
|
59 |
+
return "M"
|
60 |
+
# if "no" words are present
|
61 |
+
else:
|
62 |
+
return "U"
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
|
67 |
+
data = []
|
68 |
+
|
69 |
+
# read the dataset
|
70 |
+
with open(sys.argv[1], 'r') as f:
|
71 |
+
# loop through the documents
|
72 |
+
for line in f:
|
73 |
+
doc = json.loads(line.strip())
|
74 |
+
|
75 |
+
title_spacy = nlp(doc['title'])
|
76 |
+
abstract_spacy = nlp(doc['abstract'])
|
77 |
+
|
78 |
+
title_tokens = [token.text for token in title_spacy]
|
79 |
+
abstract_tokens = [token.text for token in abstract_spacy]
|
80 |
+
|
81 |
+
title_stems = [Stemmer('porter').stem(w.lower()) for w in title_tokens]
|
82 |
+
abstract_stems = [Stemmer('porter').stem(w.lower()) for w in abstract_tokens]
|
83 |
+
|
84 |
+
keyphrases_stems = []
|
85 |
+
for keyphrase in doc['keyphrases']:
|
86 |
+
keyphrase_spacy = nlp(keyphrase)
|
87 |
+
keyphrase_tokens = [token.text for token in keyphrase_spacy]
|
88 |
+
keyphrase_stems = [Stemmer('porter').stem(w.lower()) for w in keyphrase_tokens]
|
89 |
+
keyphrases_stems.append(keyphrase_stems)
|
90 |
+
|
91 |
+
prmu = [find_pmru(title_stems, abstract_stems, kp) for kp in keyphrases_stems]
|
92 |
+
doc['prmu'] = prmu
|
93 |
+
|
94 |
+
data.append(json.dumps(doc))
|
95 |
+
print(doc['id'])
|
96 |
+
|
97 |
+
# write the json
|
98 |
+
with open(sys.argv[2], 'w') as o:
|
99 |
+
o.write("\n".join(data))
|
stats.ipynb
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "eba2ee81",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"data": {
|
11 |
+
"application/vnd.jupyter.widget-view+json": {
|
12 |
+
"model_id": "09e8150022c94f569f19b76663ffb89f",
|
13 |
+
"version_major": 2,
|
14 |
+
"version_minor": 0
|
15 |
+
},
|
16 |
+
"text/plain": [
|
17 |
+
"Downloading builder script: 0%| | 0.00/7.79k [00:00<?, ?B/s]"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
"metadata": {},
|
21 |
+
"output_type": "display_data"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"name": "stderr",
|
25 |
+
"output_type": "stream",
|
26 |
+
"text": [
|
27 |
+
"No config specified, defaulting to: kp_times/raw\n"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"name": "stdout",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
"Downloading and preparing dataset kp_times/raw to /Users/boudin-f/.cache/huggingface/datasets/taln-ls2n___kp_times/raw/1.1.0/81f75cd972e595c55ef8cc865e898b0bc01ce7d220287a246b566b7417f07274...\n"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"data": {
|
39 |
+
"application/vnd.jupyter.widget-view+json": {
|
40 |
+
"model_id": "5f40668afdd0428eb9bec18770b4bf3e",
|
41 |
+
"version_major": 2,
|
42 |
+
"version_minor": 0
|
43 |
+
},
|
44 |
+
"text/plain": [
|
45 |
+
"Downloading data files: 0%| | 0/3 [00:00<?, ?it/s]"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
"metadata": {},
|
49 |
+
"output_type": "display_data"
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"data": {
|
53 |
+
"application/vnd.jupyter.widget-view+json": {
|
54 |
+
"model_id": "2f17b141c71d4f03ac58df7b4d1133cd",
|
55 |
+
"version_major": 2,
|
56 |
+
"version_minor": 0
|
57 |
+
},
|
58 |
+
"text/plain": [
|
59 |
+
"Extracting data files: 0%| | 0/3 [00:00<?, ?it/s]"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
"metadata": {},
|
63 |
+
"output_type": "display_data"
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"data": {
|
67 |
+
"application/vnd.jupyter.widget-view+json": {
|
68 |
+
"model_id": "",
|
69 |
+
"version_major": 2,
|
70 |
+
"version_minor": 0
|
71 |
+
},
|
72 |
+
"text/plain": [
|
73 |
+
"Generating train split: 0 examples [00:00, ? examples/s]"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
"metadata": {},
|
77 |
+
"output_type": "display_data"
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"data": {
|
81 |
+
"application/vnd.jupyter.widget-view+json": {
|
82 |
+
"model_id": "",
|
83 |
+
"version_major": 2,
|
84 |
+
"version_minor": 0
|
85 |
+
},
|
86 |
+
"text/plain": [
|
87 |
+
"Generating test split: 0 examples [00:00, ? examples/s]"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
"metadata": {},
|
91 |
+
"output_type": "display_data"
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"data": {
|
95 |
+
"application/vnd.jupyter.widget-view+json": {
|
96 |
+
"model_id": "",
|
97 |
+
"version_major": 2,
|
98 |
+
"version_minor": 0
|
99 |
+
},
|
100 |
+
"text/plain": [
|
101 |
+
"Generating validation split: 0 examples [00:00, ? examples/s]"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
"metadata": {},
|
105 |
+
"output_type": "display_data"
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"name": "stdout",
|
109 |
+
"output_type": "stream",
|
110 |
+
"text": [
|
111 |
+
"Dataset kp_times downloaded and prepared to /Users/boudin-f/.cache/huggingface/datasets/taln-ls2n___kp_times/raw/1.1.0/81f75cd972e595c55ef8cc865e898b0bc01ce7d220287a246b566b7417f07274. Subsequent calls will reuse this data.\n"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"data": {
|
116 |
+
"application/vnd.jupyter.widget-view+json": {
|
117 |
+
"model_id": "716568658d6749da8a0926dcb1fb384e",
|
118 |
+
"version_major": 2,
|
119 |
+
"version_minor": 0
|
120 |
+
},
|
121 |
+
"text/plain": [
|
122 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
"metadata": {},
|
126 |
+
"output_type": "display_data"
|
127 |
+
}
|
128 |
+
],
|
129 |
+
"source": [
|
130 |
+
"from datasets import load_dataset\n",
|
131 |
+
"\n",
|
132 |
+
"dataset = load_dataset('taln-ls2n/kptimes')"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "code",
|
137 |
+
"execution_count": 3,
|
138 |
+
"id": "4ba72244",
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [
|
141 |
+
{
|
142 |
+
"data": {
|
143 |
+
"application/vnd.jupyter.widget-view+json": {
|
144 |
+
"model_id": "cb61d182cdc14ea7868eb258413ca117",
|
145 |
+
"version_major": 2,
|
146 |
+
"version_minor": 0
|
147 |
+
},
|
148 |
+
"text/plain": [
|
149 |
+
" 0%| | 0/259923 [00:00<?, ?it/s]"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
"metadata": {},
|
153 |
+
"output_type": "display_data"
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"data": {
|
157 |
+
"application/vnd.jupyter.widget-view+json": {
|
158 |
+
"model_id": "abf721e69b3f46079166a1986514b5bf",
|
159 |
+
"version_major": 2,
|
160 |
+
"version_minor": 0
|
161 |
+
},
|
162 |
+
"text/plain": [
|
163 |
+
" 0%| | 0/10000 [00:00<?, ?it/s]"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
"metadata": {},
|
167 |
+
"output_type": "display_data"
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"data": {
|
171 |
+
"application/vnd.jupyter.widget-view+json": {
|
172 |
+
"model_id": "827aab4cd5414084adf841e52d4899c4",
|
173 |
+
"version_major": 2,
|
174 |
+
"version_minor": 0
|
175 |
+
},
|
176 |
+
"text/plain": [
|
177 |
+
" 0%| | 0/20000 [00:00<?, ?it/s]"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
"metadata": {},
|
181 |
+
"output_type": "display_data"
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"name": "stdout",
|
185 |
+
"output_type": "stream",
|
186 |
+
"text": [
|
187 |
+
"# keyphrases: 5.03\n",
|
188 |
+
"% P: 46.64\n",
|
189 |
+
"% R: 15.11\n",
|
190 |
+
"% M: 28.89\n",
|
191 |
+
"% U: 9.36\n"
|
192 |
+
]
|
193 |
+
}
|
194 |
+
],
|
195 |
+
"source": [
|
196 |
+
"from tqdm.notebook import tqdm\n",
|
197 |
+
"\n",
|
198 |
+
"P, R, M, U, nb_kps = [], [], [], [], []\n",
|
199 |
+
"\n",
|
200 |
+
"for split in ['train', 'validation', 'test']:\n",
|
201 |
+
" \n",
|
202 |
+
" for sample in tqdm(dataset[split]):\n",
|
203 |
+
" nb_kps.append(len(sample[\"keyphrases\"]))\n",
|
204 |
+
" P.append(sample[\"prmu\"].count(\"P\") / nb_kps[-1])\n",
|
205 |
+
" R.append(sample[\"prmu\"].count(\"R\") / nb_kps[-1])\n",
|
206 |
+
" M.append(sample[\"prmu\"].count(\"M\") / nb_kps[-1])\n",
|
207 |
+
" U.append(sample[\"prmu\"].count(\"U\") / nb_kps[-1])\n",
|
208 |
+
" \n",
|
209 |
+
"print(\"# keyphrases: {:.2f}\".format(sum(nb_kps)/len(nb_kps)))\n",
|
210 |
+
"print(\"% P: {:.2f}\".format(sum(P)/len(P)*100))\n",
|
211 |
+
"print(\"% R: {:.2f}\".format(sum(R)/len(R)*100))\n",
|
212 |
+
"print(\"% M: {:.2f}\".format(sum(M)/len(M)*100))\n",
|
213 |
+
"print(\"% U: {:.2f}\".format(sum(U)/len(U)*100))"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": 4,
|
219 |
+
"id": "52dda817",
|
220 |
+
"metadata": {},
|
221 |
+
"outputs": [],
|
222 |
+
"source": [
|
223 |
+
"import spacy\n",
|
224 |
+
"\n",
|
225 |
+
"nlp = spacy.load(\"en_core_web_sm\")\n",
|
226 |
+
"\n",
|
227 |
+
"# https://spacy.io/usage/linguistic-features#native-tokenizer-additions\n",
|
228 |
+
"\n",
|
229 |
+
"from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER\n",
|
230 |
+
"from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS\n",
|
231 |
+
"from spacy.util import compile_infix_regex\n",
|
232 |
+
"\n",
|
233 |
+
"# Modify tokenizer infix patterns\n",
|
234 |
+
"infixes = (\n",
|
235 |
+
" LIST_ELLIPSES\n",
|
236 |
+
" + LIST_ICONS\n",
|
237 |
+
" + [\n",
|
238 |
+
" r\"(?<=[0-9])[+\\-\\*^](?=[0-9-])\",\n",
|
239 |
+
" r\"(?<=[{al}{q}])\\.(?=[{au}{q}])\".format(\n",
|
240 |
+
" al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES\n",
|
241 |
+
" ),\n",
|
242 |
+
" r\"(?<=[{a}]),(?=[{a}])\".format(a=ALPHA),\n",
|
243 |
+
" # ✅ Commented out regex that splits on hyphens between letters:\n",
|
244 |
+
" # r\"(?<=[{a}])(?:{h})(?=[{a}])\".format(a=ALPHA, h=HYPHENS),\n",
|
245 |
+
" r\"(?<=[{a}0-9])[:<>=/](?=[{a}])\".format(a=ALPHA),\n",
|
246 |
+
" ]\n",
|
247 |
+
")\n",
|
248 |
+
"\n",
|
249 |
+
"infix_re = compile_infix_regex(infixes)\n",
|
250 |
+
"nlp.tokenizer.infix_finditer = infix_re.finditer"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": null,
|
256 |
+
"id": "047ab1cc",
|
257 |
+
"metadata": {},
|
258 |
+
"outputs": [
|
259 |
+
{
|
260 |
+
"data": {
|
261 |
+
"application/vnd.jupyter.widget-view+json": {
|
262 |
+
"model_id": "45f4357088854088870320517821adc4",
|
263 |
+
"version_major": 2,
|
264 |
+
"version_minor": 0
|
265 |
+
},
|
266 |
+
"text/plain": [
|
267 |
+
" 0%| | 0/259923 [00:00<?, ?it/s]"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
"metadata": {},
|
271 |
+
"output_type": "display_data"
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"source": [
|
275 |
+
"doc_len = []\n",
|
276 |
+
"for split in ['train', 'validation', 'test']:\n",
|
277 |
+
" for sample in tqdm(dataset[split]):\n",
|
278 |
+
" doc_len.append(len(nlp(sample[\"title\"])) + len(nlp(sample[\"abstract\"])))\n",
|
279 |
+
"print(\"avg doc len: {:.1f}\".format(sum(doc_len)/len(doc_len)))"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": null,
|
285 |
+
"id": "0d55f0f0",
|
286 |
+
"metadata": {},
|
287 |
+
"outputs": [],
|
288 |
+
"source": []
|
289 |
+
}
|
290 |
+
],
|
291 |
+
"metadata": {
|
292 |
+
"kernelspec": {
|
293 |
+
"display_name": "Python 3 (ipykernel)",
|
294 |
+
"language": "python",
|
295 |
+
"name": "python3"
|
296 |
+
},
|
297 |
+
"language_info": {
|
298 |
+
"codemirror_mode": {
|
299 |
+
"name": "ipython",
|
300 |
+
"version": 3
|
301 |
+
},
|
302 |
+
"file_extension": ".py",
|
303 |
+
"mimetype": "text/x-python",
|
304 |
+
"name": "python",
|
305 |
+
"nbconvert_exporter": "python",
|
306 |
+
"pygments_lexer": "ipython3",
|
307 |
+
"version": "3.9.12"
|
308 |
+
}
|
309 |
+
},
|
310 |
+
"nbformat": 4,
|
311 |
+
"nbformat_minor": 5
|
312 |
+
}
|