updating stats and prmu categories
Browse files- README.md +3 -3
- prmu.py +103 -0
- stats.ipynb +184 -0
README.md
CHANGED
@@ -38,9 +38,9 @@ Details about the process can be found in `prmu.py`.
|
|
38 |
|
39 |
The dataset contains the following test split:
|
40 |
|
41 |
-
| Split | # documents |
|
42 |
-
| :---------
|
43 |
-
| Test | 400 |
|
44 |
|
45 |
The following data fields are available :
|
46 |
|
|
|
38 |
|
39 |
The dataset contains the following test split:
|
40 |
|
41 |
+
| Split | # documents | #words | # keyphrases | % Present | % Reordered | % Mixed | % Unseen |
|
42 |
+
| :--------- |------------:|-----------:|-------------:|----------:|------------:|--------:|---------:|
|
43 |
+
| Test | 400 | 156.9 | 11.81 | 40.60 | 7.32 | 19.28 | 32.80 |
|
44 |
|
45 |
The following data fields are available :
|
46 |
|
prmu.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
import spacy
|
6 |
+
|
7 |
+
from nltk.stem.snowball import SnowballStemmer as Stemmer
|
8 |
+
|
9 |
+
nlp = spacy.load("fr_core_news_sm")
|
10 |
+
|
11 |
+
# https://spacy.io/usage/linguistic-features#native-tokenizer-additions
|
12 |
+
|
13 |
+
from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER
|
14 |
+
from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS
|
15 |
+
from spacy.util import compile_infix_regex
|
16 |
+
|
17 |
+
# Modify tokenizer infix patterns
|
18 |
+
infixes = (
|
19 |
+
LIST_ELLIPSES
|
20 |
+
+ LIST_ICONS
|
21 |
+
+ [
|
22 |
+
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
|
23 |
+
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
|
24 |
+
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
|
25 |
+
),
|
26 |
+
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
|
27 |
+
# ✅ Commented out regex that splits on hyphens between letters:
|
28 |
+
# r"(?<=[{a}])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
|
29 |
+
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
|
30 |
+
]
|
31 |
+
)
|
32 |
+
|
33 |
+
infix_re = compile_infix_regex(infixes)
|
34 |
+
nlp.tokenizer.infix_finditer = infix_re.finditer
|
35 |
+
|
36 |
+
|
37 |
+
def contains(subseq, inseq):
|
38 |
+
return any(inseq[pos:pos + len(subseq)] == subseq for pos in range(0, len(inseq) - len(subseq) + 1))
|
39 |
+
|
40 |
+
|
41 |
+
def find_pmru(tok_title, tok_text, tok_kp):
|
42 |
+
"""Find PRMU category of a given keyphrase."""
|
43 |
+
|
44 |
+
# if kp is present
|
45 |
+
if contains(tok_kp, tok_title) or contains(tok_kp, tok_text):
|
46 |
+
return "P"
|
47 |
+
|
48 |
+
# if kp is considered as absent
|
49 |
+
else:
|
50 |
+
|
51 |
+
# find present and absent words
|
52 |
+
present_words = [w for w in tok_kp if w in tok_title or w in tok_text]
|
53 |
+
|
54 |
+
# if "all" words are present
|
55 |
+
if len(present_words) == len(tok_kp):
|
56 |
+
return "R"
|
57 |
+
# if "some" words are present
|
58 |
+
elif len(present_words) > 0:
|
59 |
+
return "M"
|
60 |
+
# if "no" words are present
|
61 |
+
else:
|
62 |
+
return "U"
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
|
67 |
+
data = []
|
68 |
+
|
69 |
+
# read the dataset
|
70 |
+
with open(sys.argv[1], 'r') as f:
|
71 |
+
# loop through the documents
|
72 |
+
for line in f:
|
73 |
+
doc = json.loads(line.strip())
|
74 |
+
|
75 |
+
print(doc['id'])
|
76 |
+
|
77 |
+
title_spacy = nlp(doc['title'])
|
78 |
+
abstract_spacy = nlp(doc['abstract'])
|
79 |
+
|
80 |
+
title_tokens = [token.text for token in title_spacy]
|
81 |
+
abstract_tokens = [token.text for token in abstract_spacy]
|
82 |
+
|
83 |
+
title_stems = [Stemmer('french').stem(w.lower()) for w in title_tokens]
|
84 |
+
abstract_stems = [Stemmer('french').stem(w.lower()) for w in abstract_tokens]
|
85 |
+
|
86 |
+
keyphrases_stems = []
|
87 |
+
for keyphrase in doc['keyphrases']:
|
88 |
+
keyphrase_spacy = nlp(keyphrase)
|
89 |
+
keyphrase_tokens = [token.text for token in keyphrase_spacy]
|
90 |
+
keyphrase_stems = [Stemmer('french').stem(w.lower()) for w in keyphrase_tokens]
|
91 |
+
keyphrases_stems.append(keyphrase_stems)
|
92 |
+
|
93 |
+
prmu = [find_pmru(title_stems, abstract_stems, kp) for kp in keyphrases_stems]
|
94 |
+
|
95 |
+
if doc['prmu'] != prmu:
|
96 |
+
print("PRMU categories are not identical!")
|
97 |
+
|
98 |
+
doc['prmu'] = prmu
|
99 |
+
data.append(json.dumps(doc))
|
100 |
+
|
101 |
+
# write the json
|
102 |
+
with open(sys.argv[2], 'w') as o:
|
103 |
+
o.write("\n".join(data))
|
stats.ipynb
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "eba2ee81",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"No config specified, defaulting to: wikinews/raw\n",
|
14 |
+
"Reusing dataset wikinews (/Users/boudin-f/.cache/huggingface/datasets/taln-ls2n___wikinews/raw/1.0.0/aa15bd435a75a532fac6070fe8169812db6efd9d00c6fbac93992165536d8183)\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"data": {
|
19 |
+
"application/vnd.jupyter.widget-view+json": {
|
20 |
+
"model_id": "51588bf1a2714239b22d99eeac8f0db7",
|
21 |
+
"version_major": 2,
|
22 |
+
"version_minor": 0
|
23 |
+
},
|
24 |
+
"text/plain": [
|
25 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
"metadata": {},
|
29 |
+
"output_type": "display_data"
|
30 |
+
}
|
31 |
+
],
|
32 |
+
"source": [
|
33 |
+
"from datasets import load_dataset\n",
|
34 |
+
"\n",
|
35 |
+
"dataset = load_dataset('taln-ls2n/termith-eval')"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 2,
|
41 |
+
"id": "4ba72244",
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [
|
44 |
+
{
|
45 |
+
"data": {
|
46 |
+
"application/vnd.jupyter.widget-view+json": {
|
47 |
+
"model_id": "dc2eac8de82a4851901c76d873c7546f",
|
48 |
+
"version_major": 2,
|
49 |
+
"version_minor": 0
|
50 |
+
},
|
51 |
+
"text/plain": [
|
52 |
+
" 0%| | 0/399 [00:00<?, ?it/s]"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"metadata": {},
|
56 |
+
"output_type": "display_data"
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"name": "stdout",
|
60 |
+
"output_type": "stream",
|
61 |
+
"text": [
|
62 |
+
"# keyphrases: 11.81\n",
|
63 |
+
"% P: 40.60\n",
|
64 |
+
"% R: 7.32\n",
|
65 |
+
"% M: 19.28\n",
|
66 |
+
"% U: 32.80\n"
|
67 |
+
]
|
68 |
+
}
|
69 |
+
],
|
70 |
+
"source": [
|
71 |
+
"from tqdm.notebook import tqdm\n",
|
72 |
+
"\n",
|
73 |
+
"P, R, M, U, nb_kps = [], [], [], [], []\n",
|
74 |
+
" \n",
|
75 |
+
"for sample in tqdm(dataset['test']):\n",
|
76 |
+
" nb_kps.append(len(sample[\"keyphrases\"]))\n",
|
77 |
+
" P.append(sample[\"prmu\"].count(\"P\") / nb_kps[-1])\n",
|
78 |
+
" R.append(sample[\"prmu\"].count(\"R\") / nb_kps[-1])\n",
|
79 |
+
" M.append(sample[\"prmu\"].count(\"M\") / nb_kps[-1])\n",
|
80 |
+
" U.append(sample[\"prmu\"].count(\"U\") / nb_kps[-1])\n",
|
81 |
+
" \n",
|
82 |
+
"print(\"# keyphrases: {:.2f}\".format(sum(nb_kps)/len(nb_kps)))\n",
|
83 |
+
"print(\"% P: {:.2f}\".format(sum(P)/len(P)*100))\n",
|
84 |
+
"print(\"% R: {:.2f}\".format(sum(R)/len(R)*100))\n",
|
85 |
+
"print(\"% M: {:.2f}\".format(sum(M)/len(M)*100))\n",
|
86 |
+
"print(\"% U: {:.2f}\".format(sum(U)/len(U)*100))"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 3,
|
92 |
+
"id": "52dda817",
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [],
|
95 |
+
"source": [
|
96 |
+
"import spacy\n",
|
97 |
+
"\n",
|
98 |
+
"nlp = spacy.load(\"fr_core_news_sm\")\n",
|
99 |
+
"\n",
|
100 |
+
"# https://spacy.io/usage/linguistic-features#native-tokenizer-additions\n",
|
101 |
+
"\n",
|
102 |
+
"from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER\n",
|
103 |
+
"from spacy.lang.char_classes import CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS\n",
|
104 |
+
"from spacy.util import compile_infix_regex\n",
|
105 |
+
"\n",
|
106 |
+
"# Modify tokenizer infix patterns\n",
|
107 |
+
"infixes = (\n",
|
108 |
+
" LIST_ELLIPSES\n",
|
109 |
+
" + LIST_ICONS\n",
|
110 |
+
" + [\n",
|
111 |
+
" r\"(?<=[0-9])[+\\-\\*^](?=[0-9-])\",\n",
|
112 |
+
" r\"(?<=[{al}{q}])\\.(?=[{au}{q}])\".format(\n",
|
113 |
+
" al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES\n",
|
114 |
+
" ),\n",
|
115 |
+
" r\"(?<=[{a}]),(?=[{a}])\".format(a=ALPHA),\n",
|
116 |
+
" # ✅ Commented out regex that splits on hyphens between letters:\n",
|
117 |
+
" # r\"(?<=[{a}])(?:{h})(?=[{a}])\".format(a=ALPHA, h=HYPHENS),\n",
|
118 |
+
" r\"(?<=[{a}0-9])[:<>=/](?=[{a}])\".format(a=ALPHA),\n",
|
119 |
+
" ]\n",
|
120 |
+
")\n",
|
121 |
+
"\n",
|
122 |
+
"infix_re = compile_infix_regex(infixes)\n",
|
123 |
+
"nlp.tokenizer.infix_finditer = infix_re.finditer"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 4,
|
129 |
+
"id": "047ab1cc",
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"data": {
|
134 |
+
"application/vnd.jupyter.widget-view+json": {
|
135 |
+
"model_id": "7d2dc99496ef4579b3b027ca651ed359",
|
136 |
+
"version_major": 2,
|
137 |
+
"version_minor": 0
|
138 |
+
},
|
139 |
+
"text/plain": [
|
140 |
+
" 0%| | 0/399 [00:00<?, ?it/s]"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
"metadata": {},
|
144 |
+
"output_type": "display_data"
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"name": "stdout",
|
148 |
+
"output_type": "stream",
|
149 |
+
"text": [
|
150 |
+
"avg doc len: 156.9\n"
|
151 |
+
]
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"source": [
|
155 |
+
"doc_len = []\n",
|
156 |
+
"for sample in tqdm(dataset['test']):\n",
|
157 |
+
" doc_len.append(len(nlp(sample[\"title\"])) + len(nlp(sample[\"abstract\"])))\n",
|
158 |
+
" \n",
|
159 |
+
"print(\"avg doc len: {:.1f}\".format(sum(doc_len)/len(doc_len))) "
|
160 |
+
]
|
161 |
+
}
|
162 |
+
],
|
163 |
+
"metadata": {
|
164 |
+
"kernelspec": {
|
165 |
+
"display_name": "Python 3 (ipykernel)",
|
166 |
+
"language": "python",
|
167 |
+
"name": "python3"
|
168 |
+
},
|
169 |
+
"language_info": {
|
170 |
+
"codemirror_mode": {
|
171 |
+
"name": "ipython",
|
172 |
+
"version": 3
|
173 |
+
},
|
174 |
+
"file_extension": ".py",
|
175 |
+
"mimetype": "text/x-python",
|
176 |
+
"name": "python",
|
177 |
+
"nbconvert_exporter": "python",
|
178 |
+
"pygments_lexer": "ipython3",
|
179 |
+
"version": "3.9.10"
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"nbformat": 4,
|
183 |
+
"nbformat_minor": 5
|
184 |
+
}
|