"""Allocine Dataset: A Large-Scale French Movie Reviews Dataset.""" import json import datasets from datasets.tasks import TextClassification _CITATION = """\ @misc{blard2019allocine, author = {Blard, Theophile}, title = {french-sentiment-analysis-with-bert}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished={\\url{https://github.com/TheophileBlard/french-sentiment-analysis-with-bert}}, } """ _DESCRIPTION = """\ Allocine Dataset: A Large-Scale French Movie Reviews Dataset. This is a dataset for binary sentiment classification, made of user reviews scraped from Allocine.fr. It contains 100k positive and 100k negative reviews divided into 3 balanced splits: train (160k reviews), val (20k) and test (20k). """ class AllocineConfig(datasets.BuilderConfig): """BuilderConfig for Allocine.""" def __init__(self, **kwargs): """BuilderConfig for Allocine. Args: **kwargs: keyword arguments forwarded to super. """ super(AllocineConfig, self).__init__(**kwargs) class AllocineDataset(datasets.GeneratorBasedBuilder): """Allocine Dataset: A Large-Scale French Movie Reviews Dataset.""" _DOWNLOAD_URL = "https://github.com/TheophileBlard/french-sentiment-analysis-with-bert/raw/master/allocine_dataset/data.tar.bz2" _TRAIN_FILE = "train.jsonl" _VAL_FILE = "val.jsonl" _TEST_FILE = "test.jsonl" BUILDER_CONFIGS = [ AllocineConfig( name="allocine", version=datasets.Version("1.0.0"), description="Allocine Dataset: A Large-Scale French Movie Reviews Dataset", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "review": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"]), } ), supervised_keys=None, homepage="https://github.com/TheophileBlard/french-sentiment-analysis-with-bert", citation=_CITATION, task_templates=[TextClassification(text_column="review", label_column="label")], ) def _split_generators(self, dl_manager): archive_path = dl_manager.download(self._DOWNLOAD_URL) data_dir = "data" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": f"{data_dir}/{self._TRAIN_FILE}", "files": dl_manager.iter_archive(archive_path), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": f"{data_dir}/{self._VAL_FILE}", "files": dl_manager.iter_archive(archive_path), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": f"{data_dir}/{self._TEST_FILE}", "files": dl_manager.iter_archive(archive_path), }, ), ] def _generate_examples(self, filepath, files): """Generate Allocine examples.""" for path, file in files: if path == filepath: for id_, row in enumerate(file): data = json.loads(row.decode("utf-8")) review = data["review"] label = "neg" if data["polarity"] == 0 else "pos" yield id_, {"review": review, "label": label}