Datasets:

Modalities:
Text
Formats:
webdataset
Size:
< 1K
ArXiv:
Libraries:
Datasets
WebDataset
License:
Ma787639046 commited on
Commit
44eb0e9
1 Parent(s): 433eb40

Update README

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -1,3 +1,72 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ # tdro-llm/finetune_data
6
+
7
+ [![arxiv](https://img.shields.io/badge/arXiv-2408.10613-b31b1b.svg)](https://arxiv.org/abs/2408.10613)
8
+ [![Github](https://img.shields.io/badge/GitHub-tdro-8A2BE2.svg)](https://github.com/tdro-llm/tdro)
9
+
10
+ [tDRO: Task-level Distributionally Robust Optimization for Large Language Model-based Dense Retrieval](https://arxiv.org/abs/2408.10613). Guangyuan Ma, Yongliang Ma, Xing Wu, Zhenpeng Su, Ming Zhou and Songlin Hu.
11
+
12
+ This repo contains all fine-tuning data for Large Language Model-based Dense Retrieval. Please refer to [this repo](https://github.com/tdro-llm/tdro) for details to reproduce.
13
+
14
+
15
+ A total of 25 heterogeneous retrieval fine-tuning datasets with **Hard Negatives** and **Deduplication** (with test sets) are listed as belows.
16
+
17
+ | **Dataset** | **Language** | **Category** | **Symmetry** | **Reference** | **Format** | **HN Mine** | **Size** | **Deduped Size** | **Duplicates** |
18
+ |---------------------------------------------------------|--------------|------------------------------|--------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|------------------|----------------|
19
+ | agnews | English | News | Asymmetric | [AG news corpus](http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html) | (Title, Description, Negatives) of news articles from the AG News dataset | bge-base-en-v1.5 mine | 1157745 | 1157745 | 0 |
20
+ | AllNLI | English | NLI | Symmetric | [SNLI and MNLI](https://huggingface.co/datasets/multi_nli) | (Anchor, Entailment_Text, Contradiction_Text) - Combination of SNLI + MultiNLI Triplets | Sentence Transformers Train HN | 277230 | 277230 | 0 |
21
+ | altlex | English | Wikipedia Pair | Symmetric | [altlex](https://github.com/chridey/altlex/) | (English_Wikipedia, Simple_English_Wikipedia, Negatives) - Matched pairs | bge-base-en-v1.5 mine | 112696 | 112696 | 0 |
22
+ | amazon_review_2018_1m | English | Amazon | Asymmetric | [Amazon review data (2018)](http://deepyeti.ucsd.edu/jianmo/amazon/index.html) | (Title, review, Negatives) from Amazon. Only Top 1 million samples are used here to shrink the dataset sizes. | bge-base-en-v1.5 mine | 1000000 | 999999 | 1 |
23
+ | cnn_dailymail | English | News | Asymmetric | [CNN Dailymail Dataset](https://huggingface.co/datasets/cnn_dailymail) | (highlight sentences, article) with all highlight sentences as one text for each news article | bge-base-en-v1.5 mine | 311971 | 311971 | 0 |
24
+ | codesearchnet | English | Github | Asymmetric | [CodeSearchNet](https://huggingface.co/datasets/code_search_net) | (Comment, Code, Negatives) - pairs from opensource libraries hosted on GitHub. It contains code and documentation for several programming languages. | bge-base-en-v1.5 mine | 1375067 | 1375067 | 0 |
25
+ | dureader | Chinese | Multilingual Web Collections | Asymmetric | [DuReader Retrieval](https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval) | (Question, Answer, Negatives) | Use originally provided HN | 86395 | 86395 | 0 |
26
+ | eli5_question_answer | English | Reddit | Asymmetric | [ELI5](https://huggingface.co/datasets/eli5) | (Question, Answer, Negatives) | bge-base-en-v1.5 mine | 325475 | 325390 | 85 |
27
+ | gooaq_pairs | English | Web Collections | Asymmetric | [GooAQ](https://github.com/allenai/gooaq) | (Question, Answer, Negatives) - Pairs from Google auto suggest | bge-base-en-v1.5 mine | 3012496 | 3012347 | 149 |
28
+ | hotpotqa | English | Wikipedia QA | Asymmetric | [HotpotQA](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/hotpotqa.zip) | (Question, Answer, Negatives) | bge-base-en-v1.5 mine | 85000 | 85000 | 0 |
29
+ | medmcqa | English | Medical | Asymmetric | [MedMCQA](https://huggingface.co/datasets/openlifescienceai/medmcqa) | (Question, Answer, Negatives) | bge-base-en-v1.5 mine | 160869 | 160865 | 4 |
30
+ | miracl | 16 languages | Multilingual Wikipedia | Asymmetric | [MIRACL](https://huggingface.co/datasets/miracl/miracl) | (Question, Answer, Negatives) | Use originally provided HN | 32561 | 32405 | 156 |
31
+ | mr_tydi_combined | 11 languages | Multilingual Wikipedia | Asymmetric | [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi) | (Question, Answer, Negatives) | Use originally provided HN | 48715 | 48475 | 240 |
32
+ | msmarco | English | Web Collections | Asymmetric | [MS MARCO Passages](https://github.com/microsoft/MSMARCO-Passage-Ranking) | (Question, Answer, Negatives) | bowdpr HN by following [this link](https://github.com/ma787639046/bowdpr) | 502939 | 502854 | 85 |
33
+ | nq | English | Wikipedia QA | Asymmetric | [NQ](https://github.com/facebookresearch/DPR) | (Question, Answer, Negatives) | bowdpr HN by following [this link](https://github.com/ma787639046/bowdpr) | 58812 | 58800 | 12 |
34
+ | quora_duplicates_triplets | English | Forum Duplicates | Symmetric | [QQP](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | (Question, Duplicated Question, Negatives) - Duplicate question pairs from Quora | Sentence Transformers Train HN | 101762 | 97011 | 4751 |
35
+ | searchQA_top5_snippets | English | Web Collections | Asymmetric | [search_qa](https://huggingface.co/datasets/search_qa) | (Question, Top5 text snippets, Negatives) from SearchQA dataset. | bge-base-en-v1.5 mine | 117220 | 117219 | 1 |
36
+ | sentence-compression | English | News | Asymmetric | [Sentence-Compression](https://github.com/google-research-datasets/sentence-compression) | (Long text, short text) about sentence-compression | bge-base-en-v1.5 mine | 180000 | 180000 | 0 |
37
+ | SimpleWiki | English | Wikipedia Pair | Symmetric | [SimpleWiki](https://cs.pomona.edu/~dkauchak/simplification/) | (English_Wikipedia, Simple_English_Wikipedia, Negatives) matched pairs | bge-base-en-v1.5 mine | 102225 | 102225 | 0 |
38
+ | squad_pairs | English | Wikipedia QA | Asymmetric | [SQuAD](https://huggingface.co/datasets/squad) | (Question, Answer, Negatives) | bge-base-en-v1.5 mine | 87599 | 87595 | 4 |
39
+ | stackexchange_duplicate_questions_title-body_title-body | English | Forum Duplicates | Symmetric | [Stack Exchange Data API](https://data.stackexchange.com/apple/query/fork/1456963) | (Title-Body, Duplicated Title-Body, Negatives) - pairs of duplicate questions from StackExchange | bge-base-en-v1.5 mine | 250519 | 250516 | 3 |
40
+ | t2ranking | Chinese | Multilingual Web Collections | Asymmetric | [T2Ranking](https://github.com/THUIR/T2Ranking/) | (Question, Answer, Negatives) | Use originally provided HN | 200376 | 200376 | 0 |
41
+ | trivia | English | Wikipedia QA | Asymmetric | [Trivia QA](https://github.com/facebookresearch/DPR) | (Question, Answer, Negatives) | bowdpr HN by following [this link](https://github.com/ma787639046/bowdpr) | 60380 | 60370 | 10 |
42
+ | xsum | English | News | Asymmetric | [xsum](https://huggingface.co/datasets/xsum) | (Summary, News Article) pairs from XSUM dataset | bge-base-en-v1.5 mine | 226711 | 226711 | 0 |
43
+ | yahoo_answers_title_answer | English | Yahoo | Asymmetric | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) | (Title, Answer, Negatives) | bge-base-en-v1.5 mine | 1198260 | 1198018 | 242 |
44
+ | **Total Lines** | | | | | | | 11073023 | 11067280 | 5743 |
45
+
46
+ ## Cite
47
+ If you are interested in our work, please consider citing our paper.
48
+
49
+ ```bibtex
50
+ @article{ma2024tdro,
51
+ author = {Guangyuan Ma and
52
+ Yongliang Ma and
53
+ Xing Wu and
54
+ Zhenpeng Su and
55
+ Ming Zhou and
56
+ Songlin Hu},
57
+ title = {Task-level Distributionally Robust Optimization for Large Language
58
+ Model-based Dense Retrieval},
59
+ journal = {CoRR},
60
+ volume = {abs/2408.10613},
61
+ year = {2024},
62
+ url = {https://doi.org/10.48550/arXiv.2408.10613},
63
+ doi = {10.48550/ARXIV.2408.10613},
64
+ eprinttype = {arXiv},
65
+ eprint = {2408.10613},
66
+ timestamp = {Tue, 24 Sep 2024 17:36:32 +0200},
67
+ }
68
+ ```
69
+
70
+
71
+
72
+