Quentin Lhoest
commited on
Commit
•
8b1f8cf
1
Parent(s):
4bb5df9
Release: 2.3.0
Browse filesCommit from https://github.com/huggingface/datasets/commit/c82d4c4d8d1124e7fe8ec3549a7c6b1ed1343010
- README.md +189 -0
- dataset_infos.json +1 -0
- dummy/base/1.0.0/dummy_data.zip +3 -0
- dummy/large/1.0.0/dummy_data.zip +3 -0
- lccc.py +132 -0
README.md
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- other
|
4 |
+
language_creators:
|
5 |
+
- other
|
6 |
+
languages:
|
7 |
+
- zh
|
8 |
+
licenses:
|
9 |
+
- mit
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
paperswithcode_id: lccc
|
13 |
+
pretty_name: "LCCC: Large-scale Cleaned Chinese Conversation corpus"
|
14 |
+
size_categories:
|
15 |
+
- 10M<n<100M
|
16 |
+
source_datasets:
|
17 |
+
- original
|
18 |
+
task_categories:
|
19 |
+
- conversational
|
20 |
+
task_ids:
|
21 |
+
- dialogue-generation
|
22 |
+
---
|
23 |
+
|
24 |
+
# Dataset Card for LCCC
|
25 |
+
|
26 |
+
## Table of Contents
|
27 |
+
- [Dataset Card for LCCC](#dataset-card-for-lccc)
|
28 |
+
- [Table of Contents](#table-of-contents)
|
29 |
+
- [Dataset Description](#dataset-description)
|
30 |
+
- [Dataset Summary](#dataset-summary)
|
31 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
32 |
+
- [Languages](#languages)
|
33 |
+
- [Dataset Structure](#dataset-structure)
|
34 |
+
- [Data Instances](#data-instances)
|
35 |
+
- [Data Fields](#data-fields)
|
36 |
+
- [Data Splits](#data-splits)
|
37 |
+
- [Dataset Creation](#dataset-creation)
|
38 |
+
- [Curation Rationale](#curation-rationale)
|
39 |
+
- [Source Data](#source-data)
|
40 |
+
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
|
41 |
+
- [Who are the source language producers?](#who-are-the-source-language-producers)
|
42 |
+
- [Annotations](#annotations)
|
43 |
+
- [Annotation process](#annotation-process)
|
44 |
+
- [Who are the annotators?](#who-are-the-annotators)
|
45 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
46 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
47 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
48 |
+
- [Discussion of Biases](#discussion-of-biases)
|
49 |
+
- [Other Known Limitations](#other-known-limitations)
|
50 |
+
- [Additional Information](#additional-information)
|
51 |
+
- [Dataset Curators](#dataset-curators)
|
52 |
+
- [Licensing Information](#licensing-information)
|
53 |
+
- [Citation Information](#citation-information)
|
54 |
+
- [Contributions](#contributions)
|
55 |
+
|
56 |
+
## Dataset Description
|
57 |
+
|
58 |
+
- **Repository:** https://github.com/thu-coai/CDial-GPT
|
59 |
+
- **Paper:** https://arxiv.org/abs/2008.03946
|
60 |
+
|
61 |
+
### Dataset Summary
|
62 |
+
|
63 |
+
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large Chinese dialogue corpus originate from Chinese social medias. A rigorous data cleaning pipeline is designed to ensure the quality of the corpus. This pipeline involves a set of rules and several classifier-based filters. Noises such as offensive or sensitive words, special symbols, emojis, grammatically incorrect sentences, and incoherent conversations are filtered.
|
64 |
+
|
65 |
+
LCCC是一套来自于中文社交媒体的对话数据,我们设计了一套严格的数据过滤流程来确保该数据集中对话数据的质量。 这一数据过滤流程中包括一系列手工规则以及若干基于机器学习算法所构建的分类器。 我们所过滤掉的噪声包括:脏字脏词、特殊字符、颜表情、语法不通的语句、上下文不相关的对话等。
|
66 |
+
|
67 |
+
### Supported Tasks and Leaderboards
|
68 |
+
|
69 |
+
- dialogue-generation: The dataset can be used to train a model for generating dialogue responses.
|
70 |
+
- response-retrieval: The dataset can be used to train a reranker model that can be used to implement a retrieval-based dialogue model.
|
71 |
+
|
72 |
+
### Languages
|
73 |
+
|
74 |
+
LCCC is in Chinese
|
75 |
+
|
76 |
+
LCCC中的对话是中文的
|
77 |
+
|
78 |
+
## Dataset Structure
|
79 |
+
|
80 |
+
### Data Instances
|
81 |
+
|
82 |
+
```json
|
83 |
+
{
|
84 |
+
"dialog": ["火锅 我 在 重庆 成都 吃 了 七八 顿 火锅", "哈哈哈哈 ! 那 我 的 嘴巴 可能 要 烂掉 !", "不会 的 就是 好 油腻"]
|
85 |
+
}
|
86 |
+
```
|
87 |
+
|
88 |
+
### Data Fields
|
89 |
+
|
90 |
+
- `dialog` (list of strings): List of utterances consisting of a dialogue.
|
91 |
+
|
92 |
+
### Data Splits
|
93 |
+
|
94 |
+
We do not provide the offical split for LCCC-large.
|
95 |
+
But we provide a split for LCCC-base:
|
96 |
+
|
97 |
+
|train|valid|test|
|
98 |
+
|---:|---:|---:|
|
99 |
+
|6,820,506 | 20,000 | 10,000|
|
100 |
+
|
101 |
+
## Dataset Creation
|
102 |
+
|
103 |
+
### Curation Rationale
|
104 |
+
|
105 |
+
[Needs More Information]
|
106 |
+
|
107 |
+
### Source Data
|
108 |
+
|
109 |
+
#### Initial Data Collection and Normalization
|
110 |
+
|
111 |
+
[Needs More Information]
|
112 |
+
|
113 |
+
#### Who are the source language producers?
|
114 |
+
|
115 |
+
[Needs More Information]
|
116 |
+
|
117 |
+
### Annotations
|
118 |
+
|
119 |
+
#### Annotation process
|
120 |
+
|
121 |
+
[Needs More Information]
|
122 |
+
|
123 |
+
#### Who are the annotators?
|
124 |
+
|
125 |
+
[Needs More Information]
|
126 |
+
|
127 |
+
### Personal and Sensitive Information
|
128 |
+
|
129 |
+
[Needs More Information]
|
130 |
+
|
131 |
+
## Considerations for Using the Data
|
132 |
+
|
133 |
+
### Social Impact of Dataset
|
134 |
+
|
135 |
+
[Needs More Information]
|
136 |
+
|
137 |
+
### Discussion of Biases
|
138 |
+
|
139 |
+
[Needs More Information]
|
140 |
+
|
141 |
+
### Other Known Limitations
|
142 |
+
|
143 |
+
[Needs More Information]
|
144 |
+
|
145 |
+
## Additional Information
|
146 |
+
|
147 |
+
### Dataset Curators
|
148 |
+
|
149 |
+
[Needs More Information]
|
150 |
+
|
151 |
+
### Licensing Information
|
152 |
+
|
153 |
+
MIT License
|
154 |
+
|
155 |
+
Copyright (c) 2020 lemon234071
|
156 |
+
|
157 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
158 |
+
of this software and associated documentation files (the "Software"), to deal
|
159 |
+
in the Software without restriction, including without limitation the rights
|
160 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
161 |
+
copies of the Software, and to permit persons to whom the Software is
|
162 |
+
furnished to do so, subject to the following conditions:
|
163 |
+
|
164 |
+
The above copyright notice and this permission notice shall be included in all
|
165 |
+
copies or substantial portions of the Software.
|
166 |
+
|
167 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
168 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
169 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
170 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
171 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
172 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
173 |
+
SOFTWARE.
|
174 |
+
|
175 |
+
### Citation Information
|
176 |
+
|
177 |
+
```bibtex
|
178 |
+
@inproceedings{wang2020chinese,
|
179 |
+
title={A Large-Scale Chinese Short-Text Conversation Dataset},
|
180 |
+
author={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
|
181 |
+
booktitle={NLPCC},
|
182 |
+
year={2020},
|
183 |
+
url={https://arxiv.org/abs/2008.03946}
|
184 |
+
}
|
185 |
+
```
|
186 |
+
|
187 |
+
### Contributions
|
188 |
+
|
189 |
+
Thanks to [Yinhe Zheng](https://github.com/silverriver) for adding this dataset.
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"large": {"description": "LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations.\nA rigorous data cleaning pipeline is designed to ensure the quality of the corpus.\nThis pipeline involves a set of rules and several classifier-based filters.\nNoises such as offensive or sensitive words, special symbols, emojis,\ngrammatically incorrect sentences, and incoherent conversations are filtered.\n", "citation": "@inproceedings{wang2020chinese,\ntitle={A Large-Scale Chinese Short-Text Conversation Dataset},\nauthor={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},\nbooktitle={NLPCC},\nyear={2020},\nurl={https://arxiv.org/abs/2008.03946}\n}\n", "homepage": "https://github.com/thu-coai/CDial-GPT", "license": "MIT", "features": {"dialog": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lccc", "config_name": "large", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1530827965, "num_examples": 12007759, "dataset_name": "lccc"}}, "download_checksums": {"https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_large.jsonl.gz": {"num_bytes": 607605643, "checksum": "0eaf3b39e1f54c414c3c75a8319f89c8a98b4bc6f91913b051a0b849e7d3326f"}}, "download_size": 607605643, "post_processing_size": null, "dataset_size": 1530827965, "size_in_bytes": 2138433608}, "base": {"description": "LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations.\nA rigorous data cleaning pipeline is designed to ensure the quality of the corpus.\nThis pipeline involves a set of rules and several classifier-based filters.\nNoises such as offensive or sensitive words, special symbols, emojis,\ngrammatically incorrect sentences, and incoherent conversations are filtered.\n", "citation": "@inproceedings{wang2020chinese,\ntitle={A Large-Scale Chinese Short-Text Conversation Dataset},\nauthor={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},\nbooktitle={NLPCC},\nyear={2020},\nurl={https://arxiv.org/abs/2008.03946}\n}\n", "homepage": "https://github.com/thu-coai/CDial-GPT", "license": "MIT", "features": {"dialog": [{"dtype": "string", "id": null, "_type": "Value"}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "lccc", "config_name": "base", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 932634902, "num_examples": 6820506, "dataset_name": "lccc"}, "test": {"name": "test", "num_bytes": 1498216, "num_examples": 10000, "dataset_name": "lccc"}, "validation": {"name": "validation", "num_bytes": 2922731, "num_examples": 20000, "dataset_name": "lccc"}}, "download_checksums": {"https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_train.jsonl.gz": {"num_bytes": 369854377, "checksum": "2162e0ed923fba62329cabf7e1493fbe59248afc94a62508e4abdea61e624627"}, "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_valid.jsonl.gz": {"num_bytes": 1071594, "checksum": "5cc27e7ac3447c5a31386178f82ff01cab56e27827445ef8d429809301491759"}, "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_test.jsonl.gz": {"num_bytes": 549124, "checksum": "cf8757587bdb8f360cc94fc38baadf9e185bad65a26155527a8430c048676016"}}, "download_size": 371475095, "post_processing_size": null, "dataset_size": 937055849, "size_in_bytes": 1308530944}}
|
dummy/base/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b55cad4bfdd78c371ec57503cec463e24ce1a37f60040cb8f5082c6e0d84fde
|
3 |
+
size 2100
|
dummy/large/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87ec878e0941fa2af39af9ae57f74bea745ab0bb87ab3d7d1b943d22c6a1b833
|
3 |
+
size 723
|
lccc.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations.
|
16 |
+
A rigorous data cleaning pipeline is designed to ensure the quality of the corpus.
|
17 |
+
This pipeline involves a set of rules and several classifier-based filters.
|
18 |
+
Noises such as offensive or sensitive words, special symbols, emojis,
|
19 |
+
grammatically incorrect sentences, and incoherent conversations are filtered.
|
20 |
+
"""
|
21 |
+
|
22 |
+
import json
|
23 |
+
import os
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
# BibTeX citation
|
29 |
+
_CITATION = """\
|
30 |
+
@inproceedings{wang2020chinese,
|
31 |
+
title={A Large-Scale Chinese Short-Text Conversation Dataset},
|
32 |
+
author={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
|
33 |
+
booktitle={NLPCC},
|
34 |
+
year={2020},
|
35 |
+
url={https://arxiv.org/abs/2008.03946}
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
# Description of the dataset here
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations.
|
42 |
+
A rigorous data cleaning pipeline is designed to ensure the quality of the corpus.
|
43 |
+
This pipeline involves a set of rules and several classifier-based filters.
|
44 |
+
Noises such as offensive or sensitive words, special symbols, emojis,
|
45 |
+
grammatically incorrect sentences, and incoherent conversations are filtered.
|
46 |
+
"""
|
47 |
+
|
48 |
+
_HOMEPAGE = "https://github.com/thu-coai/CDial-GPT"
|
49 |
+
_LICENSE = "MIT"
|
50 |
+
_URLS = {
|
51 |
+
"large": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_large.jsonl.gz",
|
52 |
+
"base": {
|
53 |
+
"train": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_train.jsonl.gz",
|
54 |
+
"valid": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_valid.jsonl.gz",
|
55 |
+
"test": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_test.jsonl.gz",
|
56 |
+
},
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
class LCCC(datasets.GeneratorBasedBuilder):
|
61 |
+
"""Large-scale Cleaned Chinese Conversation corpus."""
|
62 |
+
|
63 |
+
VERSION = datasets.Version("1.0.0")
|
64 |
+
|
65 |
+
BUILDER_CONFIGS = [
|
66 |
+
datasets.BuilderConfig(name="large", version=VERSION, description="The large version of LCCC"),
|
67 |
+
datasets.BuilderConfig(name="base", version=VERSION, description="The base version of LCCC"),
|
68 |
+
]
|
69 |
+
|
70 |
+
def _info(self):
|
71 |
+
features = datasets.Features(
|
72 |
+
{
|
73 |
+
"dialog": [datasets.Value("string")],
|
74 |
+
}
|
75 |
+
)
|
76 |
+
return datasets.DatasetInfo(
|
77 |
+
# This is the description that will appear on the datasets page.
|
78 |
+
description=_DESCRIPTION,
|
79 |
+
# This defines the different columns of the dataset and their types
|
80 |
+
features=features, # Here we define them above because they are different between the two configurations
|
81 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
82 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
83 |
+
# supervised_keys=("sentence", "label"),
|
84 |
+
# Homepage of the dataset for documentation
|
85 |
+
homepage=_HOMEPAGE,
|
86 |
+
# License for the dataset if available
|
87 |
+
license=_LICENSE,
|
88 |
+
# Citation for the dataset
|
89 |
+
citation=_CITATION,
|
90 |
+
)
|
91 |
+
|
92 |
+
def _split_generators(self, dl_manager):
|
93 |
+
urls = _URLS[self.config.name]
|
94 |
+
downloaded_data = dl_manager.download_and_extract(urls)
|
95 |
+
if self.config.name == "large":
|
96 |
+
return [
|
97 |
+
datasets.SplitGenerator(
|
98 |
+
name=datasets.Split.TRAIN,
|
99 |
+
gen_kwargs={
|
100 |
+
"filepath": os.path.join(downloaded_data),
|
101 |
+
},
|
102 |
+
)
|
103 |
+
]
|
104 |
+
elif self.config.name == "base":
|
105 |
+
return [
|
106 |
+
datasets.SplitGenerator(
|
107 |
+
name=datasets.Split.TRAIN,
|
108 |
+
gen_kwargs={
|
109 |
+
"filepath": os.path.join(downloaded_data["train"]),
|
110 |
+
},
|
111 |
+
),
|
112 |
+
datasets.SplitGenerator(
|
113 |
+
name=datasets.Split.TEST,
|
114 |
+
gen_kwargs={"filepath": os.path.join(downloaded_data["test"])},
|
115 |
+
),
|
116 |
+
datasets.SplitGenerator(
|
117 |
+
name=datasets.Split.VALIDATION,
|
118 |
+
gen_kwargs={
|
119 |
+
"filepath": os.path.join(downloaded_data["valid"]),
|
120 |
+
},
|
121 |
+
),
|
122 |
+
]
|
123 |
+
|
124 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
125 |
+
def _generate_examples(self, filepath):
|
126 |
+
with open(filepath, encoding="utf-8") as f:
|
127 |
+
for key, row in enumerate(f):
|
128 |
+
row = row.strip()
|
129 |
+
if row:
|
130 |
+
yield key, {
|
131 |
+
"dialog": json.loads(row),
|
132 |
+
}
|