File size: 6,954 Bytes
d09cfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedd124
d09cfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cedd124
d09cfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c12ea60
d09cfcc
 
 
 
 
 
 
 
3b19ad6
d09cfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""TIMIT automatic speech recognition dataset."""


import os

import pandas as pd

import datasets
from datasets.tasks import AutomaticSpeechRecognition


_CITATION = """\
@inproceedings{
  title={TIMIT Acoustic-Phonetic Continuous Speech Corpus},
  author={Garofolo, John S., et al},
  ldc_catalog_no={LDC93S1},
  DOI={https://doi.org/10.35111/17gk-bn40},
  journal={Linguistic Data Consortium, Philadelphia},
  year={1983}
}
"""

_DESCRIPTION = """\
The TIMIT corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies
and for the evaluation of automatic speech recognition systems.

TIMIT contains high quality recordings of 630 individuals/speakers with 8 different American English dialects,
with each individual reading upto 10 phonetically rich sentences.

More info on TIMIT dataset can be understood from the "README" which can be found here:
https://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt
"""

_URL = "https://data.deepai.org/timit.zip"
_HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC93S1"


class TimitASRConfig(datasets.BuilderConfig):
    """BuilderConfig for TimitASR."""

    def __init__(self, **kwargs):
        """
        Args:
          data_dir: `string`, the path to the folder containing the files in the
            downloaded .tar
          citation: `string`, citation for the data set
          url: `string`, url for information about the data set
          **kwargs: keyword arguments forwarded to super.
        """
        super(TimitASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)


class TimitASR(datasets.GeneratorBasedBuilder):
    """TimitASR dataset."""

    BUILDER_CONFIGS = [TimitASRConfig(name="clean", description="'Clean' speech.")]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "phonetic_detail": datasets.Sequence(
                        {
                            "start": datasets.Value("int64"),
                            "stop": datasets.Value("int64"),
                            "utterance": datasets.Value("string"),
                        }
                    ),
                    "word_detail": datasets.Sequence(
                        {
                            "start": datasets.Value("int64"),
                            "stop": datasets.Value("int64"),
                            "utterance": datasets.Value("string"),
                        }
                    ),
                    "dialect_region": datasets.Value("string"),
                    "sentence_type": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "id": datasets.Value("string"),
                }
            ),
            supervised_keys=("file", "text"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="text")],
        )

    def _split_generators(self, dl_manager):
        archive_path = dl_manager.download_and_extract(_URL)

        train_csv_path = os.path.join(archive_path, "train_data.csv")
        test_csv_path = os.path.join(archive_path, "test_data.csv")

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_info_csv": train_csv_path}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_info_csv": test_csv_path}),
        ]

    def _generate_examples(self, data_info_csv):
        """Generate examples from TIMIT archive_path based on the test/train csv information."""
        # Extract the archive path
        data_path = os.path.join(os.path.dirname(data_info_csv).strip(), "data")

        # Read the data info to extract rows mentioning about non-converted audio only
        data_info = pd.read_csv(open(data_info_csv, encoding="utf8"))
        # making sure that the columns having no information about the file paths are removed
        data_info.dropna(subset=["path_from_data_dir"], inplace=True)

        # filter out only the required information for data preparation
        data_info = data_info.loc[(data_info["is_audio"]) & (~data_info["is_converted_audio"])]

        # Iterating the contents of the data to extract the relevant information
        for audio_idx in range(data_info.shape[0]):
            audio_data = data_info.iloc[audio_idx]

            # extract the path to audio
            wav_path = os.path.join(data_path, *(audio_data["path_from_data_dir"].split("/")))

            # extract transcript
            with open(wav_path.replace(".WAV", ".TXT"), "r", encoding="utf-8") as op:
                transcript = " ".join(op.readlines()[0].split()[2:])  # first two items are sample number

            # extract phonemes
            with open(wav_path.replace(".WAV", ".PHN"), "r", encoding="utf-8") as op:
                phonemes = [
                    {
                        "start": i.split(" ")[0],
                        "stop": i.split(" ")[1],
                        "utterance": " ".join(i.split(" ")[2:]).strip(),
                    }
                    for i in op.readlines()
                ]

            # extract words
            with open(wav_path.replace(".WAV", ".WRD"), "r", encoding="utf-8") as op:
                words = [
                    {
                        "start": i.split(" ")[0],
                        "stop": i.split(" ")[1],
                        "utterance": " ".join(i.split(" ")[2:]).strip(),
                    }
                    for i in op.readlines()
                ]

            example = {
                "file": wav_path,
                "text": transcript,
                "phonetic_detail": phonemes,
                "word_detail": words,
                "dialect_region": audio_data["dialect_region"],
                "sentence_type": audio_data["filename"][0:2],
                "speaker_id": audio_data["speaker_id"],
                "id": audio_data["filename"].replace(".WAV", ""),
            }

            yield audio_idx, example