File size: 6,954 Bytes
d09cfcc cedd124 d09cfcc cedd124 d09cfcc c12ea60 d09cfcc 3b19ad6 d09cfcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""TIMIT automatic speech recognition dataset."""
import os
import pandas as pd
import datasets
from datasets.tasks import AutomaticSpeechRecognition
_CITATION = """\
@inproceedings{
title={TIMIT Acoustic-Phonetic Continuous Speech Corpus},
author={Garofolo, John S., et al},
ldc_catalog_no={LDC93S1},
DOI={https://doi.org/10.35111/17gk-bn40},
journal={Linguistic Data Consortium, Philadelphia},
year={1983}
}
"""
_DESCRIPTION = """\
The TIMIT corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies
and for the evaluation of automatic speech recognition systems.
TIMIT contains high quality recordings of 630 individuals/speakers with 8 different American English dialects,
with each individual reading upto 10 phonetically rich sentences.
More info on TIMIT dataset can be understood from the "README" which can be found here:
https://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt
"""
_URL = "https://data.deepai.org/timit.zip"
_HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC93S1"
class TimitASRConfig(datasets.BuilderConfig):
"""BuilderConfig for TimitASR."""
def __init__(self, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files in the
downloaded .tar
citation: `string`, citation for the data set
url: `string`, url for information about the data set
**kwargs: keyword arguments forwarded to super.
"""
super(TimitASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)
class TimitASR(datasets.GeneratorBasedBuilder):
"""TimitASR dataset."""
BUILDER_CONFIGS = [TimitASRConfig(name="clean", description="'Clean' speech.")]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("string"),
"text": datasets.Value("string"),
"phonetic_detail": datasets.Sequence(
{
"start": datasets.Value("int64"),
"stop": datasets.Value("int64"),
"utterance": datasets.Value("string"),
}
),
"word_detail": datasets.Sequence(
{
"start": datasets.Value("int64"),
"stop": datasets.Value("int64"),
"utterance": datasets.Value("string"),
}
),
"dialect_region": datasets.Value("string"),
"sentence_type": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"id": datasets.Value("string"),
}
),
supervised_keys=("file", "text"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="text")],
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download_and_extract(_URL)
train_csv_path = os.path.join(archive_path, "train_data.csv")
test_csv_path = os.path.join(archive_path, "test_data.csv")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_info_csv": train_csv_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_info_csv": test_csv_path}),
]
def _generate_examples(self, data_info_csv):
"""Generate examples from TIMIT archive_path based on the test/train csv information."""
# Extract the archive path
data_path = os.path.join(os.path.dirname(data_info_csv).strip(), "data")
# Read the data info to extract rows mentioning about non-converted audio only
data_info = pd.read_csv(open(data_info_csv, encoding="utf8"))
# making sure that the columns having no information about the file paths are removed
data_info.dropna(subset=["path_from_data_dir"], inplace=True)
# filter out only the required information for data preparation
data_info = data_info.loc[(data_info["is_audio"]) & (~data_info["is_converted_audio"])]
# Iterating the contents of the data to extract the relevant information
for audio_idx in range(data_info.shape[0]):
audio_data = data_info.iloc[audio_idx]
# extract the path to audio
wav_path = os.path.join(data_path, *(audio_data["path_from_data_dir"].split("/")))
# extract transcript
with open(wav_path.replace(".WAV", ".TXT"), "r", encoding="utf-8") as op:
transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number
# extract phonemes
with open(wav_path.replace(".WAV", ".PHN"), "r", encoding="utf-8") as op:
phonemes = [
{
"start": i.split(" ")[0],
"stop": i.split(" ")[1],
"utterance": " ".join(i.split(" ")[2:]).strip(),
}
for i in op.readlines()
]
# extract words
with open(wav_path.replace(".WAV", ".WRD"), "r", encoding="utf-8") as op:
words = [
{
"start": i.split(" ")[0],
"stop": i.split(" ")[1],
"utterance": " ".join(i.split(" ")[2:]).strip(),
}
for i in op.readlines()
]
example = {
"file": wav_path,
"text": transcript,
"phonetic_detail": phonemes,
"word_detail": words,
"dialect_region": audio_data["dialect_region"],
"sentence_type": audio_data["filename"][0:2],
"speaker_id": audio_data["speaker_id"],
"id": audio_data["filename"].replace(".WAV", ""),
}
yield audio_idx, example
|