File size: 7,318 Bytes
d09cfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b15d04
d09cfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b15d04
 
 
 
 
 
 
 
 
d09cfcc
 
 
 
 
 
3625a70
d09cfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b15d04
 
 
 
 
 
d09cfcc
 
0b15d04
 
d09cfcc
 
0b15d04
d09cfcc
 
51bb7a7
d3e43fb
 
d09cfcc
 
d3e43fb
 
d09cfcc
 
 
d3e43fb
 
d09cfcc
 
 
 
 
 
 
 
 
 
d3e43fb
 
d09cfcc
 
 
 
 
 
 
 
 
0b15d04
 
 
 
 
d09cfcc
0b15d04
 
d09cfcc
 
 
0b15d04
 
 
 
d09cfcc
 
bc3ee03
d3e43fb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""TIMIT automatic speech recognition dataset."""


import os
from pathlib import Path

import datasets


_CITATION = """\
@inproceedings{
  title={TIMIT Acoustic-Phonetic Continuous Speech Corpus},
  author={Garofolo, John S., et al},
  ldc_catalog_no={LDC93S1},
  DOI={https://doi.org/10.35111/17gk-bn40},
  journal={Linguistic Data Consortium, Philadelphia},
  year={1983}
}
"""

_DESCRIPTION = """\
The TIMIT corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies
and for the evaluation of automatic speech recognition systems.

TIMIT contains high quality recordings of 630 individuals/speakers with 8 different American English dialects,
with each individual reading upto 10 phonetically rich sentences.

More info on TIMIT dataset can be understood from the "README" which can be found here:
https://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt
"""

_HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC93S1"


class TimitASRConfig(datasets.BuilderConfig):
    """BuilderConfig for TimitASR."""

    def __init__(self, **kwargs):
        """
        Args:
          data_dir: `string`, the path to the folder containing the files in the
            downloaded .tar
          citation: `string`, citation for the data set
          url: `string`, url for information about the data set
          **kwargs: keyword arguments forwarded to super.
        """
        super(TimitASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)


class TimitASR(datasets.GeneratorBasedBuilder):
    """TimitASR dataset."""

    BUILDER_CONFIGS = [TimitASRConfig(name="clean", description="'Clean' speech.")]

    @property
    def manual_download_instructions(self):
        return (
            "To use TIMIT you have to download it manually. "
            "Please create an account and download the dataset from https://catalog.ldc.upenn.edu/LDC93S1 \n"
            "Then extract all files in one folder and load the dataset with: "
            "`datasets.load_dataset('timit_asr', data_dir='path/to/folder/folder_name')`"
        )

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "text": datasets.Value("string"),
                    "phonetic_detail": datasets.Sequence(
                        {
                            "start": datasets.Value("int64"),
                            "stop": datasets.Value("int64"),
                            "utterance": datasets.Value("string"),
                        }
                    ),
                    "word_detail": datasets.Sequence(
                        {
                            "start": datasets.Value("int64"),
                            "stop": datasets.Value("int64"),
                            "utterance": datasets.Value("string"),
                        }
                    ),
                    "dialect_region": datasets.Value("string"),
                    "sentence_type": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "id": datasets.Value("string"),
                }
            ),
            supervised_keys=("file", "text"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))

        if not os.path.exists(data_dir):
            raise FileNotFoundError(
                f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('timit_asr', data_dir=...)` that includes files unzipped from the TIMIT zip. Manual download instructions: {self.manual_download_instructions}"
            )

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train", "data_dir": data_dir}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test", "data_dir": data_dir}),
        ]

    def _generate_examples(self, split, data_dir):
        """Generate examples from TIMIT archive_path based on the test/train csv information."""
        # Iterating the contents of the data to extract the relevant information
        wav_paths = sorted(Path(data_dir).glob(f"**/{split}/**/*.wav"))
        wav_paths = wav_paths if wav_paths else sorted(Path(data_dir).glob(f"**/{split.upper()}/**/*.WAV"))
        for key, wav_path in enumerate(wav_paths):

            # extract transcript
            txt_path = with_case_insensitive_suffix(wav_path, ".txt")
            with txt_path.open(encoding="utf-8") as op:
                transcript = " ".join(op.readlines()[0].split()[2:])  # first two items are sample number

            # extract phonemes
            phn_path = with_case_insensitive_suffix(wav_path, ".phn")
            with phn_path.open(encoding="utf-8") as op:
                phonemes = [
                    {
                        "start": i.split(" ")[0],
                        "stop": i.split(" ")[1],
                        "utterance": " ".join(i.split(" ")[2:]).strip(),
                    }
                    for i in op.readlines()
                ]

            # extract words
            wrd_path = with_case_insensitive_suffix(wav_path, ".wrd")
            with wrd_path.open(encoding="utf-8") as op:
                words = [
                    {
                        "start": i.split(" ")[0],
                        "stop": i.split(" ")[1],
                        "utterance": " ".join(i.split(" ")[2:]).strip(),
                    }
                    for i in op.readlines()
                ]

            dialect_region = wav_path.parents[1].name
            sentence_type = wav_path.name[0:2]
            speaker_id = wav_path.parents[0].name[1:]
            id_ = wav_path.stem

            example = {
                "file": str(wav_path),
                "audio": str(wav_path),
                "text": transcript,
                "phonetic_detail": phonemes,
                "word_detail": words,
                "dialect_region": dialect_region,
                "sentence_type": sentence_type,
                "speaker_id": speaker_id,
                "id": id_,
            }

            yield key, example


def with_case_insensitive_suffix(path: Path, suffix: str):
    path = path.with_suffix(suffix.lower())
    path = path if path.exists() else path.with_suffix(suffix.upper())
    return path