timit_asr / timit_asr.py
albertvillanova's picture
Make extensions case-insensitive in timit_asr dataset (#4425)
d3e43fb
raw
history blame
7.49 kB
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""TIMIT automatic speech recognition dataset."""
import os
from pathlib import Path
import datasets
from datasets.tasks import AutomaticSpeechRecognition
_CITATION = """\
@inproceedings{
title={TIMIT Acoustic-Phonetic Continuous Speech Corpus},
author={Garofolo, John S., et al},
ldc_catalog_no={LDC93S1},
DOI={https://doi.org/10.35111/17gk-bn40},
journal={Linguistic Data Consortium, Philadelphia},
year={1983}
}
"""
_DESCRIPTION = """\
The TIMIT corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies
and for the evaluation of automatic speech recognition systems.
TIMIT contains high quality recordings of 630 individuals/speakers with 8 different American English dialects,
with each individual reading upto 10 phonetically rich sentences.
More info on TIMIT dataset can be understood from the "README" which can be found here:
https://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt
"""
_HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC93S1"
class TimitASRConfig(datasets.BuilderConfig):
"""BuilderConfig for TimitASR."""
def __init__(self, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files in the
downloaded .tar
citation: `string`, citation for the data set
url: `string`, url for information about the data set
**kwargs: keyword arguments forwarded to super.
"""
super(TimitASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs)
class TimitASR(datasets.GeneratorBasedBuilder):
"""TimitASR dataset."""
BUILDER_CONFIGS = [TimitASRConfig(name="clean", description="'Clean' speech.")]
@property
def manual_download_instructions(self):
return (
"To use TIMIT you have to download it manually. "
"Please create an account and download the dataset from https://catalog.ldc.upenn.edu/LDC93S1 \n"
"Then extract all files in one folder and load the dataset with: "
"`datasets.load_dataset('timit_asr', data_dir='path/to/folder/folder_name')`"
)
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"phonetic_detail": datasets.Sequence(
{
"start": datasets.Value("int64"),
"stop": datasets.Value("int64"),
"utterance": datasets.Value("string"),
}
),
"word_detail": datasets.Sequence(
{
"start": datasets.Value("int64"),
"stop": datasets.Value("int64"),
"utterance": datasets.Value("string"),
}
),
"dialect_region": datasets.Value("string"),
"sentence_type": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"id": datasets.Value("string"),
}
),
supervised_keys=("file", "text"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager):
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(data_dir):
raise FileNotFoundError(
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('timit_asr', data_dir=...)` that includes files unzipped from the TIMIT zip. Manual download instructions: {self.manual_download_instructions}"
)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train", "data_dir": data_dir}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test", "data_dir": data_dir}),
]
def _generate_examples(self, split, data_dir):
"""Generate examples from TIMIT archive_path based on the test/train csv information."""
# Iterating the contents of the data to extract the relevant information
wav_paths = sorted(Path(data_dir).glob(f"**/{split.upper()}/**/*.wav"))
wav_paths = wav_paths if wav_paths else sorted(Path(data_dir).glob(f"**/{split.upper()}/**/*.WAV"))
for key, wav_path in enumerate(wav_paths):
# extract transcript
txt_path = with_case_insensitive_suffix(wav_path, ".txt")
with txt_path.open(encoding="utf-8") as op:
transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number
# extract phonemes
phn_path = with_case_insensitive_suffix(wav_path, ".phn")
with phn_path.open(encoding="utf-8") as op:
phonemes = [
{
"start": i.split(" ")[0],
"stop": i.split(" ")[1],
"utterance": " ".join(i.split(" ")[2:]).strip(),
}
for i in op.readlines()
]
# extract words
wrd_path = with_case_insensitive_suffix(wav_path, ".wrd")
with wrd_path.open(encoding="utf-8") as op:
words = [
{
"start": i.split(" ")[0],
"stop": i.split(" ")[1],
"utterance": " ".join(i.split(" ")[2:]).strip(),
}
for i in op.readlines()
]
dialect_region = wav_path.parents[1].name
sentence_type = wav_path.name[0:2]
speaker_id = wav_path.parents[0].name[1:]
id_ = wav_path.stem
example = {
"file": str(wav_path),
"audio": str(wav_path),
"text": transcript,
"phonetic_detail": phonemes,
"word_detail": words,
"dialect_region": dialect_region,
"sentence_type": sentence_type,
"speaker_id": speaker_id,
"id": id_,
}
yield key, example
def with_case_insensitive_suffix(path: Path, suffix: str):
path = path.with_suffix(suffix.lower())
path = path if path.exists() else path.with_suffix(suffix.upper())
return path