|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TIMIT automatic speech recognition dataset.""" |
|
|
|
|
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{ |
|
title={TIMIT Acoustic-Phonetic Continuous Speech Corpus}, |
|
author={Garofolo, John S., et al}, |
|
ldc_catalog_no={LDC93S1}, |
|
DOI={https://doi.org/10.35111/17gk-bn40}, |
|
journal={Linguistic Data Consortium, Philadelphia}, |
|
year={1983} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The TIMIT corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies |
|
and for the evaluation of automatic speech recognition systems. |
|
|
|
TIMIT contains high quality recordings of 630 individuals/speakers with 8 different American English dialects, |
|
with each individual reading upto 10 phonetically rich sentences. |
|
|
|
More info on TIMIT dataset can be understood from the "README" which can be found here: |
|
https://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt |
|
""" |
|
|
|
_HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC93S1" |
|
|
|
|
|
class TimitASRConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for TimitASR.""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(TimitASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs) |
|
|
|
|
|
class TimitASR(datasets.GeneratorBasedBuilder): |
|
"""TimitASR dataset.""" |
|
|
|
BUILDER_CONFIGS = [TimitASRConfig(name="clean", description="'Clean' speech.")] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return ( |
|
"To use TIMIT you have to download it manually. " |
|
"Please create an account and download the dataset from https://catalog.ldc.upenn.edu/LDC93S1 \n" |
|
"Then extract all files in one folder and load the dataset with: " |
|
"`datasets.load_dataset('timit_asr', data_dir='path/to/folder/folder_name')`" |
|
) |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
"phonetic_detail": datasets.Sequence( |
|
{ |
|
"start": datasets.Value("int64"), |
|
"stop": datasets.Value("int64"), |
|
"utterance": datasets.Value("string"), |
|
} |
|
), |
|
"word_detail": datasets.Sequence( |
|
{ |
|
"start": datasets.Value("int64"), |
|
"stop": datasets.Value("int64"), |
|
"utterance": datasets.Value("string"), |
|
} |
|
), |
|
"dialect_region": datasets.Value("string"), |
|
"sentence_type": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
|
|
if not os.path.exists(data_dir): |
|
raise FileNotFoundError( |
|
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('timit_asr', data_dir=...)` that includes files unzipped from the TIMIT zip. Manual download instructions: {self.manual_download_instructions}" |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train", "data_dir": data_dir}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test", "data_dir": data_dir}), |
|
] |
|
|
|
def _generate_examples(self, split, data_dir): |
|
"""Generate examples from TIMIT archive_path based on the test/train csv information.""" |
|
|
|
wav_paths = sorted(Path(data_dir).glob(f"**/{split.upper()}/**/*.wav")) |
|
wav_paths = wav_paths if wav_paths else sorted(Path(data_dir).glob(f"**/{split.upper()}/**/*.WAV")) |
|
for key, wav_path in enumerate(wav_paths): |
|
|
|
|
|
txt_path = with_case_insensitive_suffix(wav_path, ".txt") |
|
with txt_path.open(encoding="utf-8") as op: |
|
transcript = " ".join(op.readlines()[0].split()[2:]) |
|
|
|
|
|
phn_path = with_case_insensitive_suffix(wav_path, ".phn") |
|
with phn_path.open(encoding="utf-8") as op: |
|
phonemes = [ |
|
{ |
|
"start": i.split(" ")[0], |
|
"stop": i.split(" ")[1], |
|
"utterance": " ".join(i.split(" ")[2:]).strip(), |
|
} |
|
for i in op.readlines() |
|
] |
|
|
|
|
|
wrd_path = with_case_insensitive_suffix(wav_path, ".wrd") |
|
with wrd_path.open(encoding="utf-8") as op: |
|
words = [ |
|
{ |
|
"start": i.split(" ")[0], |
|
"stop": i.split(" ")[1], |
|
"utterance": " ".join(i.split(" ")[2:]).strip(), |
|
} |
|
for i in op.readlines() |
|
] |
|
|
|
dialect_region = wav_path.parents[1].name |
|
sentence_type = wav_path.name[0:2] |
|
speaker_id = wav_path.parents[0].name[1:] |
|
id_ = wav_path.stem |
|
|
|
example = { |
|
"file": str(wav_path), |
|
"audio": str(wav_path), |
|
"text": transcript, |
|
"phonetic_detail": phonemes, |
|
"word_detail": words, |
|
"dialect_region": dialect_region, |
|
"sentence_type": sentence_type, |
|
"speaker_id": speaker_id, |
|
"id": id_, |
|
} |
|
|
|
yield key, example |
|
|
|
|
|
def with_case_insensitive_suffix(path: Path, suffix: str): |
|
path = path.with_suffix(suffix.lower()) |
|
path = path if path.exists() else path.with_suffix(suffix.upper()) |
|
return path |
|
|