# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """TIMIT automatic speech recognition dataset.""" import os import pandas as pd import datasets from datasets.tasks import AutomaticSpeechRecognition _CITATION = """\ @inproceedings{ title={TIMIT Acoustic-Phonetic Continuous Speech Corpus}, author={Garofolo, John S., et al}, ldc_catalog_no={LDC93S1}, DOI={https://doi.org/10.35111/17gk-bn40}, journal={Linguistic Data Consortium, Philadelphia}, year={1983} } """ _DESCRIPTION = """\ The TIMIT corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies and for the evaluation of automatic speech recognition systems. TIMIT contains high quality recordings of 630 individuals/speakers with 8 different American English dialects, with each individual reading upto 10 phonetically rich sentences. More info on TIMIT dataset can be understood from the "README" which can be found here: https://catalog.ldc.upenn.edu/docs/LDC93S1/readme.txt """ _URL = "https://data.deepai.org/timit.zip" _HOMEPAGE = "https://catalog.ldc.upenn.edu/LDC93S1" class TimitASRConfig(datasets.BuilderConfig): """BuilderConfig for TimitASR.""" def __init__(self, **kwargs): """ Args: data_dir: `string`, the path to the folder containing the files in the downloaded .tar citation: `string`, citation for the data set url: `string`, url for information about the data set **kwargs: keyword arguments forwarded to super. """ super(TimitASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs) class TimitASR(datasets.GeneratorBasedBuilder): """TimitASR dataset.""" BUILDER_CONFIGS = [TimitASRConfig(name="clean", description="'Clean' speech.")] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "file": datasets.Value("string"), "text": datasets.Value("string"), "phonetic_detail": datasets.Sequence( { "start": datasets.Value("int64"), "stop": datasets.Value("int64"), "utterance": datasets.Value("string"), } ), "word_detail": datasets.Sequence( { "start": datasets.Value("int64"), "stop": datasets.Value("int64"), "utterance": datasets.Value("string"), } ), "dialect_region": datasets.Value("string"), "sentence_type": datasets.Value("string"), "speaker_id": datasets.Value("string"), "id": datasets.Value("string"), } ), supervised_keys=("file", "text"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="text")], ) def _split_generators(self, dl_manager): archive_path = dl_manager.download_and_extract(_URL) train_csv_path = os.path.join(archive_path, "train_data.csv") test_csv_path = os.path.join(archive_path, "test_data.csv") return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_info_csv": train_csv_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_info_csv": test_csv_path}), ] def _generate_examples(self, data_info_csv): """Generate examples from TIMIT archive_path based on the test/train csv information.""" # Extract the archive path data_path = os.path.join(os.path.dirname(data_info_csv).strip(), "data") # Read the data info to extract rows mentioning about non-converted audio only data_info = pd.read_csv(open(data_info_csv, encoding="utf8")) # making sure that the columns having no information about the file paths are removed data_info.dropna(subset=["path_from_data_dir"], inplace=True) # filter out only the required information for data preparation data_info = data_info.loc[(data_info["is_audio"]) & (~data_info["is_converted_audio"])] # Iterating the contents of the data to extract the relevant information for audio_idx in range(data_info.shape[0]): audio_data = data_info.iloc[audio_idx] # extract the path to audio wav_path = os.path.join(data_path, *(audio_data["path_from_data_dir"].split("/"))) # extract transcript with open(wav_path.replace(".WAV", ".TXT"), "r", encoding="utf-8") as op: transcript = " ".join(op.readlines()[0].split()[2:]) # first two items are sample number # extract phonemes with open(wav_path.replace(".WAV", ".PHN"), "r", encoding="utf-8") as op: phonemes = [ { "start": i.split(" ")[0], "stop": i.split(" ")[1], "utterance": " ".join(i.split(" ")[2:]).strip(), } for i in op.readlines() ] # extract words with open(wav_path.replace(".WAV", ".WRD"), "r", encoding="utf-8") as op: words = [ { "start": i.split(" ")[0], "stop": i.split(" ")[1], "utterance": " ".join(i.split(" ")[2:]).strip(), } for i in op.readlines() ] example = { "file": wav_path, "text": transcript, "phonetic_detail": phonemes, "word_detail": words, "dialect_region": audio_data["dialect_region"], "sentence_type": audio_data["filename"][0:2], "speaker_id": audio_data["speaker_id"], "id": audio_data["filename"].replace(".WAV", ""), } yield audio_idx, example