Datasets:

ArXiv:
File size: 12,832 Bytes
cb715ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbd8c2
cb715ae
2cae54f
 
cb715ae
 
 
fbbd8c2
cb715ae
 
 
 
f2c5483
 
cb715ae
e1fc14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
 
 
 
fbbd8c2
cb715ae
 
 
 
 
fbbd8c2
 
 
cb715ae
 
 
 
 
fbbd8c2
 
24ca8bc
fbbd8c2
24ca8bc
fbbd8c2
 
24ca8bc
fbbd8c2
24ca8bc
fbbd8c2
 
cb715ae
 
fbbd8c2
 
 
 
 
 
 
 
 
 
 
 
cb715ae
357d568
f2c5483
 
fde171d
 
f2c5483
 
357d568
 
f2c5483
fbbd8c2
f2c5483
 
357d568
 
 
f2c5483
fbbd8c2
f2c5483
 
357d568
 
2cae54f
f2c5483
2cae54f
f2c5483
 
2cae54f
 
357d568
 
 
 
f2c5483
fbbd8c2
2cae54f
 
357d568
 
 
 
 
fbbd8c2
 
 
 
f2c5483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
f2c5483
 
 
 
2cae54f
f2c5483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbd8c2
f2c5483
 
 
2cae54f
cb715ae
 
 
 
 
f2c5483
fbbd8c2
2cae54f
 
cb715ae
 
 
 
357d568
bfc4da1
357d568
 
 
 
fbbd8c2
f2c5483
2cae54f
fbbd8c2
cb715ae
f2c5483
 
 
 
fbbd8c2
f2c5483
 
2cae54f
f2c5483
 
fbbd8c2
 
 
 
f2c5483
 
 
 
 
 
 
2c7ef16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c5483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c7ef16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbd8c2
 
2cae54f
fbbd8c2
 
 
 
 
 
 
 
 
 
 
 
2cae54f
 
fbbd8c2
 
 
 
 
2cae54f
fbbd8c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""RedPajama V2: Quality annotated Web Text Documents."""

import json

import datasets
import traceback
import gzip
from typing import List

import pyarrow.parquet as pq

logger = datasets.logging.get_logger(__name__)

_DESCRIPTION = """\
RedPajama V2: an Open Dataset for Training Large Language Models
"""

_URL_BASE = 'https://data.together.xyz/redpajama-data-v2/v1.0.0'
_LANGUAGES = ("en", "de", "fr", "es", "it")
_MISSING_FILES_PATTERN = "urls/missing-{component}.txt"
_NUM_SHARDS = 5000

_CC_SNAPSHOT_IDS = (
    "2014-15",
    "2014-23",
    "2014-35",
    "2014-41",
    "2014-42",
    "2014-49",
    "2014-52",
    "2015-14",
    "2015-22",
    "2015-27",
    "2015-32",
    "2015-35",
    "2015-40",
    "2015-48",
    "2016-07",
    "2016-18",
    "2016-22",
    "2016-26",
    "2016-30",
    "2016-36",
    "2016-40",
    "2016-44",
    "2016-50",
    "2017-04",
    "2017-09",
    "2017-17",
    "2017-22",
    "2017-26",
    "2017-30",
    "2017-34",
    "2017-39",
    "2017-43",
    "2017-47",
    "2017-51",
    "2018-05",
    "2018-09",
    "2018-13",
    "2018-17",
    "2018-22",
    "2018-26",
    "2018-30",
    "2018-34",
    "2018-39",
    "2018-43",
    "2018-47",
    "2018-51",
    "2019-04",
    "2019-09",
    "2019-13",
    "2019-18",
    "2019-22",
    "2019-26",
    "2019-30",
    "2019-35",
    "2019-39",
    "2019-43",
    "2019-47",
    "2019-51",
    "2020-05",
    "2020-10",
    "2020-16",
    "2020-24",
    "2020-29",
    "2020-34",
    "2020-40",
    "2020-45",
    "2020-50",
    "2021-04",
    "2021-10",
    "2021-17",
    "2021-21",
    "2021-25",
    "2021-31",
    "2021-39",
    "2021-43",
    "2021-49",
    "2022-05",
    "2022-21",
    "2022-27",
    "2022-33",
    "2022-40",
    "2022-49",
    "2023-06",
    "2023-14"
)


class RedPajamaDataV2Config(datasets.BuilderConfig):
    """BuilderConfig for RedPajama."""

    def __init__(self, *args, **kwargs):
        """BuilderConfig for RedPajama.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(RedPajamaDataV2Config, self).__init__(**kwargs)
        self.partition: str = kwargs.pop("partition", "all")
        self.snapshots: List[str] = kwargs.pop("snapshots", _CC_SNAPSHOT_IDS)
        self.languages: List[str] = kwargs.pop("languages", _LANGUAGES)


class RedPajamaV2(datasets.GeneratorBasedBuilder):
    """ RedPajama V2: Quality annotated Web Text Documents. """

    BUILDER_CONFIGS = [
        RedPajamaDataV2Config(
            name='sample',
            version=datasets.Version("1.0.0", ""),
            description=f"RedPajamaV2 Sample",
        ),
        RedPajamaDataV2Config(
            name='default',
            version=datasets.Version("1.0.0", ""),
            description=f"RedPajamaV2",
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "raw_content": datasets.Value("string"),
                    "doc_id": datasets.Value("string"),
                    "meta": datasets.Value("string"),
                    "quality_signals": datasets.Value("string")
                }
            ),
            supervised_keys=None,
        )

    def _split_generators_sample(self, dl_manager):
        # fetch list of base tags
        sample_base_tags_fp = dl_manager.download_and_extract(
            "sample/sample_listings.txt"
        )
        with open(sample_base_tags_fp, "r") as fd:
            sample_base_tags = [line.strip() for line in fd]

        # fetch documents
        logger.info(f"Downloading {len(sample_base_tags)} documents files.")
        documents_files = dl_manager.download({
            base_tag: f"sample/documents/{base_tag}.json.gz"
            for base_tag in sample_base_tags
        })

        # fetch quality signals
        logger.info(f"Downloading {len(sample_base_tags)} quality signals files.")
        quality_signals_files = dl_manager.download({
            base_tag: f"sample/quality_signals/{base_tag}.signals.json.gz"
            for base_tag in sample_base_tags
        })

        # fetch ids of duplicates
        logger.info(f"Downloading {len(sample_base_tags)} duplicates ids files.")
        duplicates_ids_files = dl_manager.download({
            base_tag: f"sample/duplicates/{base_tag}.duplicates.parquet"
            for base_tag in sample_base_tags
        })

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "base_tags": sample_base_tags,
                    "documents_files": documents_files,
                    "quality_signals_files": quality_signals_files,
                    "duplicates_ids_files": duplicates_ids_files
                }
            )
        ]

    def _split_generators_full(self, dl_manager):
        snapshots = getattr(self.config, 'snapshots', _CC_SNAPSHOT_IDS)
        languages = getattr(self.config, 'languages', _LANGUAGES)
        partition = getattr(self.config, 'partition', 'all')

        if partition == 'all':
            partitions = ['head', 'middle', 'tail']
        elif partition == 'head_middle':
            partitions = ['head', 'middle']
        elif partition == 'tail':
            partitions = [partition]
        else:
            raise ValueError(f'invalid partition: {partition}')

        # fetch list of missing files (e.g., missing duplicates or corrupted documents and
        # quality signal files)
        missing_files_paths = dl_manager.download_and_extract({
            component: _MISSING_FILES_PATTERN.format(component=component)
            for component in ("documents", "signals", "duplicates")
        })

        missing_files = {}
        for component, missing_file in missing_files_paths.items():
            with open(missing_file) as f:
                missing_files[component] = set(line.strip() for line in f)

        # build list of urls to fetch
        documents_urls = {}
        quality_signals_urls = {}
        duplicates_ids_urls = {}
        base_tags = []

        for lang in languages:
            for snapshot in snapshots:
                for part in partitions:
                    for n in range(_NUM_SHARDS):
                        base_tag = f"{snapshot}/{n:04d}/{lang}_{part}"
                        base_tags.append(base_tag)

                        # documents
                        url = f"{_URL_BASE}/documents/{base_tag}.json.gz"
                        if url not in missing_files["documents"]:
                            documents_urls[base_tag] = url

                        # quality signals
                        url = f"{_URL_BASE}/quality_signals/{base_tag}.signals.json.gz"
                        if url not in missing_files["signals"]:
                            quality_signals_urls[base_tag] = url

                        # duplicates
                        url = f"{_URL_BASE}/duplicates/{base_tag}.duplicates.parquet"
                        if url not in missing_files["duplicates"]:
                            duplicates_ids_urls[base_tag] = url

        # download documents files
        logger.info(f"Downloading {len(documents_urls)} documents files.")
        documents_files = dl_manager.download(documents_urls)

        # download quality signals files
        logger.info(f"Downloading {len(quality_signals_urls)} quality signals files.")
        quality_signals_files = dl_manager.download(quality_signals_urls)

        # download duplicates ids files
        logger.info(f"Downloading {len(duplicates_ids_urls)} duplicates ids files.")
        duplicates_ids_files = dl_manager.download(duplicates_ids_urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "base_tags": base_tags,
                    "documents_files": documents_files,
                    "quality_signals_files": quality_signals_files,
                    "duplicates_ids_files": duplicates_ids_files
                }
            )
        ]

    def _split_generators(self, dl_manager):
        if self.config.name.endswith("sample"):
            return self._split_generators_sample(dl_manager)

        return self._split_generators_full(dl_manager)

    def _generate_examples(
            self, base_tags, documents_files, quality_signals_files,
            duplicates_ids_files
    ):
        key = 0
        for base_tag in base_tags:
            doc_file = documents_files.get(base_tag)
            qs_file = quality_signals_files.get(base_tag)
            dupe_file = duplicates_ids_files.get(base_tag)

            if doc_file is None:
                continue

            for sample in self.__get_generator(
                    base_tag, doc_file, qs_file, dupe_file
            ):
                yield key, sample
                key += 1

    def __get_generator(self, base_tag, doc_file, qs_file, dupe_file):
        if "_tail" in base_tag:
            yield from self._handle_tail(base_tag, doc_file, qs_file, dupe_file)
        else:
            yield from self._handle_head_middle(base_tag, doc_file, qs_file, dupe_file)

    def _handle_tail(self, base_tag, doc_file, qs_file, dupe_file):
        try:
            with gzip.open(doc_file, "rt", encoding="utf-8") as df:
                for row, doc in enumerate(df):
                    doc_id = f"{base_tag}.json.gz/{row}"
                    try:
                        yield self.handle_record("tail", doc_id, doc, None, None)
                    except Exception as e:
                        logger.warning(f'failed handling row {row} in {doc_file}')
                        traceback.print_exc()
                        continue

        except gzip.BadGzipFile as e:
            # skip broken gzip files
            print(f'BadGzipFile: {doc_file, qs_file}')
            traceback.print_exc()
            return

    def _handle_head_middle(
            self, base_tag, doc_file, qs_file, dupe_file
    ):
        if qs_file is None:
            yield from self._handle_tail(base_tag, doc_file, None, None)
            return

        # load duplicates
        try:
            with open(dupe_file, "rb") as df:
                duplicates = set(pq.read_table(
                    df, columns=["doc_id"], use_pandas_metadata=False
                )["doc_id"].to_pylist())
        except Exception as e:
            logger.warning(f'no duplicate ids found for {base_tag}')
            duplicates = set()

        try:
            with gzip.open(doc_file, "rt", encoding="utf-8") as df:
                with gzip.open(qs_file, "rt", encoding="utf-8") as qf:
                    for row, (doc, qs) in enumerate(zip(df, qf)):
                        doc_id = f"{base_tag}.json.gz/{row}"

                        try:
                            yield self.handle_record(
                                "head_middle", doc_id, doc, qs, is_duplicate=doc_id in duplicates
                            )
                        except Exception as e:
                            logger.warning(f'failed handling row {row} in {doc_file} ({qs_file})')
                            traceback.print_exc()
                            continue

        except gzip.BadGzipFile as e:
            # skip broken gzip files
            print(f'BadGzipFile: {doc_file, qs_file}')
            traceback.print_exc()
            return

    @staticmethod
    def handle_record(part, doc_id, doc, qs, is_duplicate=None):
        doc = json.loads(doc)
        qs = json.loads(qs) if qs is not None else {}

        meta = {
            "url": doc["url"],
            "partition": part,
            "language": doc["language"],
            "source_domain": doc["source_domain"],
            "date_download": doc["date_download"],
            "digest": doc["digest"],
        }

        quality_signals = qs.get("quality_signals", {})
        quality_signals["is_duplicate"] = is_duplicate

        return {
            "raw_content": doc["raw_content"],
            "doc_id": doc_id,
            "meta": json.dumps(meta),
            "quality_signals": json.dumps(quality_signals),
        }